Circuit Virtual Escape Room Map ~ [3-Player]

Welcome Player 1 You must work with your team to earn your reward Your clues interact, and you cannot afford To leave groupmates behind or sit silently staring This is time for unmuting and time for screen sharing. This escape room requires your circuitry smarts You will face separate doors and will have unique parts Of the overall challenge. It will test your persistence As you calculate voltage, current, power, resistance Make sure that you're careful and read all the text When your team is all ready, you can start - just click "Next"	Welcome Player 2 You must work with your team to earn your reward Your clues interact, and you cannot afford To leave groupmates behind or sit silently staring This is time for unmuting and time for screen sharing. This escape room requires your circuitry smarts You will face separate doors and will have unique parts Of the overall challenge. It will test your persistence As you calculate voltage, current, power, resistance Make sure that you're careful and read all the text When your team is all ready, you can start - just click "Next"	Welcome Player 3 You must work with your team to earn your reward Your clues interact, and you cannot afford To leave groupmates behind or sit silently staring This is time for unmuting and time for screen sharing. This escape room requires your circuitry smarts You will face separate doors and will have unique parts Of the overall challenge. It will test your persistence As you calculate voltage, current, power, resistance Make sure that you're careful and read all the text When your team is all ready, you can start - just click "Next"
	Door #1	
The resistor shown below has a 3-watt power rating From this published limit, find volts by calculating Maximum voltage for the resistance shown by colors Too bad your data's scrambled, compare lists with all the others	The resistor shown below has a 3-watt power rating From this published limit, find volts by calculating Maximum voltage for the resistance shown by colors Too bad your data's scrambled, compare lists with all the others	The resistor shown below has a 3-watt power rating From this published limit, find volts by calculating Maximum voltage for the resistance shown by colors Too bad your data's scrambled, compare lists with all the others
Resistance = 3 Ω	Resistance = 75 Ω	Resistance = 10 Ω
Brown – Black – Black Mass: 15 g Diameter: 5.5 mm Length: 15.0 mm Resistance: 10 Ω Power Rating: 3 W Operating Temperature: -55°C ~ 235°C https://www.digikey.com/en/products/detail/stackpole- electronics-inc/RSMF3JT10R0/1695561	Orange - Black - Gold Mass: 15 g Diameter: 5.5 mm Length: 15.0 mm Resistance: 3 Ω Power Rating: 3 W Operating Temperature: -55°C ~ 235°C https://www.digikey.com/en/products/detail/stackpole- electronics-inc/RSMF3JT3R00/1695451	Purple – Green – Black Mass: 15 g Diameter: 5.5 mm Length: 15.0 mm Resistance: 75 Ω Power Rating: 3 W Operating Temperature: -55°C ~ 235°C https://digikey.com/en/products/detail/stackpole-electronics- inc/RSMF3JT75R0/1695621
3 V	15 V	5.477 V (5.4-5.5)

В

When this mess of a circuit is connected and flowing

Which resistor to choose? The key is in knowing

The voltage supplied is eighteen

Where "ten and a half" volts are seen

В

7Ω

But in one the flow is much slower

The current is found with quite simple math Is the slow one the upper or lower?

7Ω

Door #4

Door #5			
You reach in your backpack and pull out a wire To get through this next door, you'll see I require The name of the metal, and for your calculation Each member has some of the right information	You reach in your backpack and pull out a wire To get through this next door, you'll see I require The name of the metal, and for your calculation Each member has some of the right information	You reach in your backpack and pull out a wire To get through this next door, you'll see I require The name of the metal, and for your calculation Each member has some of the right information	
200 Ft	A Contraction of the second	THE T	
The spool of wire is labeled "200 ft". Convert this into meters.	You hook up the wire to a potential difference of 3 volts and measure 5.83 A with an ideal ammeter.	What is the cross-sectional area of the wire? Complete the missing value rounded to 2 decimal places	
60.96 m	0.515 (0.514-0.515)	1.26 x 10-₅ (1.25-1.26)	
MaterialResistivitySilver $1.59 \times 10^{.9} \Omega m$ Copper $1.68 \times 10^{.9} \Omega m$ Cold $2.44 \times 10^{.9} \Omega m$ Aluminum $2.65 \times 10^{.9} \Omega m$ Tungsten $5.6 \times 10^{.9} \Omega m$ Iron $9.71 \times 10^{.9} \Omega m$ Platinum $1.06 \times 10^{.7} \Omega m$ Manganin $4.82 \times 10^{.7} \Omega m$ Lead $2.2 \times 10^{.7} \Omega m$ Mercury $9.8 \times 10^{.7} \Omega m$ Nichrome $1.0 \times 10^{.6} \Omega m$ Quartz (fused) $7.5 \times 10^{.17} \Omega m$	Material Resistivity Silver 1.59 × 10·8 μm Copper 1.68 × 10·8 μm Gold 2.44 × 10·8 μm Aluminum 2.65 × 10·8 μm Tungsten 5.6 × 10·8 μm Iron 9.71 × 10·8 μm Platinum 1.06 × 10·7 μm Manganin 4.82 × 10·7 μm Lead 2.2 × 10·7 μm Nichrome 1.0 × 10·6 μm Quartz (fused) 7.5 × 10·17 μm	Material Resistivity Silver 1.59 × 10·8 μm Copper 1.68 × 10·8 μm Gold 2.44 × 10·8 μm Aluminum 2.65 × 10·8 μm Tungsten 5.6 × 10·8 μm Iron 9.71 × 10·8 μm Platinum 1.06 × 10·7 μm Manganin 4.82 × 10·7 μm Lead 2.2 × 10·7 μm Mercury 9.8 × 10·7 μm Nichrome 1.0 × 10·6 μm Quartz (fused) 7.5 × 10·17 μm	
$ ho=rac{RA}{L}$ Resistivity is a property that can help define the material What is the wire made of?	$\rho = \frac{RA}{L}$ Resistivity is a property that can help define the material What is the wire made of?	$\rho = \frac{RA}{L}$ Resistivity is a property that can help define the material What is the wire made of?	
Platinum	Platinum	Platinum	

Submit Form			
Congratulations again!!	Congratulations again!!	Congratulations again!!	
1.602 isn't just a random code you know. It's a reference to the elementary charge of protons on electrons (1.60217662 x 10^-19 Coulombs)	1.602 isn't just a random code you know. It's a reference to the elementary charge of protons on electrons (1.60217662 x 10^-19 Coulombs)	1.602 isn't just a random code you know. It's a reference to the elementary charge of protons on electrons (1.60217662 x 10^-19 Coulombs)	
Electricity all the way through :)	Electricity all the way through :)	Electricity all the way through :)	