	 The physical world contains basic elements whose structure can be studied 				
Essential	 Matter is transformed in accordance with various chemical laws 				
Understandings	and principles.				
	 Energy is a fundamental part of physical and chemical changes. 				
	 Heat is one of the fundamental forms of energy affecting changes 				
	and order or matter in our universe.				
	 How do chemical industries convert substances into other useful 				
Essential	materials by large-scale manufacturing?				
Questions	 What chemical principles are involved in converting nitrogen gas to useful mitrogen based expressingle? 				
	userul nitrogen-based compounds?				
	 How does electrical energy cause chemical changes? Complete fortilizers contain the three main elements growing plants. 				
	need: nitrogen phosphorous and potassium as well as trace ions				
	and filler material.				
	 Nitrogen recycles among plants and animals (i.e., nitrogen cycle). 				
	 Oxidation-reduction reactions fix nitrogen using hydrogen gas 				
	(Haber-Bosch process).				
	 The higher (more positive) the oxidation state becomes, the more 				
Essential	an atom has become oxidized. The lower (less positive) the atom's				
Knowledge	oxidation state becomes, the more the atom has become reduced.				
	 Reaction rates (cnemical kinetics) express now rast a particular observed observed 				
	 All reversible reactions in closed containers eventually reach 				
	dynamic equilibrium if conditions such as temperature remain				
	constant and LeChatelier's principle is applied.				
	 Electrochemistry involves chemical changes that produce or are 				
	caused by electrical energy, specifically known as the process of				
	electrolysis.				
	■ <u>Terms</u> :				
	 nitrogen cycle, phosphates, colorimetry, colorimeter, 				
Maaabalama	oxidation-reduction reaction, oxidation state, reaction rates,				
vocabulary	Kinetics, dynamic equilibrium, LeChateller's Principle,				
	coll electrodes electric current self bridge dry coll and				
	alkaline batteries				
	 Determine oxidation states. 				
Essential	 Perform chemical systems at equilibrium. 				
Skills	 Describe explosive nitrogen chemistry. 				
	 Investigate getting charged by electrochemistry. 				

	Science and Technology				
	A. Unifying Themes				
	A1. Systems				
	Students apply an understanding of systems to explain and				
	analyze man-made and natural phenomena.				
	 Analyze a system using the principles of boundaries, 				
	subsystems, inputs, outputs, feedback, or the system's				
	relation to other systems and design solutions to a system				
	problem.				
	b. Explain and provide examples that illustrate how it may not				
	always be possible to predict the impact of changing some				
	part of a man-made or natural system.				
	A2.Models				
	Students evaluate the effectiveness of a model by comparing its				
B 1 4 1	predications to actual observations from the physical setting,				
Related	the living environment, and the technological world.				
Maine Learning	A3. Constancy and Change				
Results	Students identify and analyze examples of constancy and shange that result from verying types and rotes of shange in				
	change that result from varying types and rates of change in physical biological and technical systems with and without				
	counterbalances				
	B. The Skills and Traits of Scientific Inquiry and Technological Design				
	B1 The Skills and Traits of Scientific Inquiry				
	Students methodically plan, conduct, analyze data from and				
	communicate results of in-depth scientific investigations,				
	including experiments guided by a testable hypothesis.				
	a. Identify questions, concepts, and testable hypotheses that				
	guide scientific investigations.				
	 Design and safely conduct methodical scientific 				
	investigations, including experiments with controls.				
	c. Use statistics to summarize, describe, analyze, and interpret				
	results.				
	d. Formulate and revise scientific investigations using logic and				
	evidence.				
	e. Use a variety of tools and technologies to improve				
	investigations and communications.				
	t. Recognize and analyze alternative explanations and models				
	using scientific criteria.				
	g. Communicate and detend scientific ideas.				

Related Maine Learning Results	 C. The Scientific and Technological Enterprise C1.Understandings of Inquiry Students describe key aspects of scientific investigations: that they are guided by scientific principles and knowledge, and that they are performed to test ideas, and that they are communicated and defended publicly. a. Describe how hypotheses and past and present knowledge guide and influence scientific investigations.
	guide and influence scientific investigations. b. Describe how scientists defend their evidence and explanations using logical arguments and verifiable results.

	D. The Physical Setting			
	D3.Matter and Energy			
	Students describe the structure, behavior, and interactions of			
	matter at the atomic level and the relationships between matter			
	an	d energy.		
	a.	Describe the structure of atoms in terms of neutrons,		
		protons, and electrons and the role of the atomic structure in		
		determining chemical properties.		
	b.	Describe how the number and arrangement of atoms in a		
		molecule determine a molecule's properties, including the		
		types of bonds it makes with other molecules and its mass,		
		and apply this to predictions about chemical reactions.		
	C.	Explain the essential roles of carbon and water in life		
	h	processes.		
	u.	bescribe now light is emitted and absorbed by atoms		
		identify a substance		
Related		Describe factors that affect the rate of chemical reactions		
Maine Learning	С.	(including concentration, pressure, temperature, and the		
Results		presence of molecules that encourage interaction with other		
		molecules.		
	f.	Apply an understanding of the factors that affect the rate of		
		chemical reaction to predictions about the rate of chemical		
		reactions.		
	g.	Describe nuclear reactions, including fusion and fission, and		
	_	the energy they release.		
	h.	Describe the radioactive decay and half-life.		
	i.	Explain the relationship between kinetic and potential		
		energy and apply the knowledge to solve problems.		
	J.	Describe now in energy transformations the total amount of		
		energy remains the same, but because or inefficiencies		
		(heat, sound, and vibration) useful energy is often lost		
	Ŀ	Apply an understanding of energy transformations to colvo		
	κ.	nrohlems		
	1	Describe the relationship among heat temperature and		
		pressure in terms of the actions of atoms molecules and		
		ions.		
	l			

	E. The Living Environment				
	E2.Ecosystems Students describe and analyze the interactions, cycles, and				
	factors that affect short-term and long-term ecosystem stability				
	and change.				
	 Explain why ecosystems can be reasonably stable over 				
	hundreds or thousands of years, even though populations				
	may fluctuate.				
Related	b. Describe dynamic equilibrium in ecosystems and factors that				
Maine Learning	can, in the long run, lead to change in the normal pattern of				
Results	cyclic fluctuations and apply that knowledge to actual				
	situations.				
	c. Explain the concept of carrying capacity and list factors that				
	determine the amount of life that any environment can				
	support.				
	 Describe the chilical fole of photosynthesis and how energy and the chemical elements that make up malagulas are 				
	transformed in acceptations and above basic conversation				
	 Lab Investigation A.3: Testing for Fertilizer Components 				
Sample	Identifying the steps of the Nitrogen Cycle				
Lessons	 Lab Investigation A.7: Analysis of Fertilizer for Percent Phosphate. 				
And	 Application of Oxidation-Reduction to determine Oxidation State of 				
Activities	Chemical Equations (A.9)				
	 Determination of Plant Nutrients (A.5) 				
Sample	 Section and unit quizzes and tests 				
Classroom	 Laboratory investigations and reports 				
Assessment	 "Developing Skills" classroom activities 				
Methods	 "Making Decisions" classroom activities 				
	Publications:				
Sample	• Chemistry in the Community – Chemcom, 5^{m} edition				
Resources	■ <u>VIGEOS:</u>				
	 vvoria of Chemistry series 				
	• <u>Planet Earth</u> series				