CHEMICAL AND PHYSICAL CHANGE (E7) | PAR | <u>AT A:</u> Determine whether the follow 1. Wax freezing | ring changes are chemical (C) or | physical (P). | |-----|--|--------------------------------------|------------------| | | 2. Sublimation of dry ice blocks | | | | | _ 3. Healing of a wound | | | | | 4. Burning paper | | | | | _ 5. Melting butter | | | | | _ 6. Precipitation of silver crystals | | | | | _ 7. Dissolving of salt in water | | | | | 8. Rusting of iron | | | | | 9. Expansion of a metal rod held in a | a Bunsen burner | | | | _ 10. Calcium chloride undergoing a h | nygroscopic reaction with water in a | ıir | | | _ 11. Formation of aluminum chloride | e from and aluminum and cupric chl | loride dihydrate | | | _ 12. Solidification of para-dichlorobe | nzene | | | | <u>CT B:</u> Identify the following as elem
_ 1. Oxygen, O ₂ (g) | eents (E), compounds (C), or mix | tures (M). | | | | | | | | 2. Silver nitrate, AgNO ₃ (s) | | | | | _ 3. Wax | | | | | 4. Copper, Cu (s) | | | | | 5. Salt water, H ₂ O (aq) | | | | | 6. Wood | | | | | 7. Glucose, C ₆ H ₁₂ O ₆ (s) | | | | | 8. Rust, Fe ₂ O ₃ (s) | | | | | 9. Steel | | | | | _ 10. Nitrogen dioxide, NO ₂ (g) | l .h | | | | T C: List the 4 indicators of a chemical | - | | | 1. | 2. | 3. | 4. | ### MOLAR MASS & MOLE CONVERSIONS: (E14 & E16) 1. Find the molar mass of these compounds: a. MnO b. HgS c. MgF₂ d. CoCl₂ e. La(ClO₃)₃ f. $Ga_2(SO_4)_3$ g. BaI₂ • 2H₂O h. $NaS_2O_3 \bullet 5H_2O$ - 2. Show set-up of all calculations. Use labels and significant figures. Remember one mole can equal 3 different things concurrently: 22.4 L of gas at STP, the molar mass of a substance in grams, 6.022x10²³ particles (atoms, ions, or molecules). Be careful, because some of these problems will also involve a metric system conversion, as well as a mole conversion. - a) What is the volume of 0.500 g of Xe gas at STP? - b) How many moles are in 8.96 L of N_2 gas at STP? - c) What is the mass of 2.4×10^{24} atoms of Fe? - d) How many molecules are in 3.0 grams of $Al_2(SO_4)_3$? - e) What is the volume of 1.5×10^{22} molecules of CO_2 gas at STP? - f) How many molecules are in 25.0 mg of acetic acid, $HC_2H_3O_2$? - g) How many milliliters are in 1.35 moles of Cl₂ gas at STP? - h) What is the mass (in milligrams) of 1.49 L of H_2 gas at STP? #### BALANCING EQUATIONS: (E20) #### Match the following terms with the correct definition: decomposition, double replacement, single replacement, and synthesis _____ A reaction that involves a single reactant breaking into 2 or more parts. A reaction that two or more parts of the reactants combine into 1 part. _ A reaction where 1 more reactive element replaces 1 less reactive element. _____ A reaction where 2 elements switch places to form new products. #### Balance the following equations using coefficients. 1. Ca + $$O_2 \rightarrow CaO$$ 2. $$ZnS + O_2 \rightarrow ZnO + SO_2$$ 3. Sb + HCl $$\rightarrow$$ SbCl₃ + H₂ 4. $$KClO_3 \rightarrow KCl + O_2$$ 5. $$P + H_2 \rightarrow PH_3$$ 6. $$Zn(OH)_2$$ + H_3PO_4 \rightarrow $Zn_3(PO_4)_2$ + H_2O 7. Na + $$H_2O \rightarrow NaOH + H_2$$ 8. HF + Al(OH)₃ + NaOH $$\rightarrow$$ Na₃AlF₆ + H₂O 9. Fe + $$H_2O \rightarrow Fe_3O_4 + H_2$$ 10. $$PCl_5 + H_2O \rightarrow H_3PO_4 + HCl$$ 11. $$HNO_3 + Mg(OH)_2 \rightarrow Mg(NO_3)_2 + H_2O$$ 12. $$C_6H_{10} + O_2 \rightarrow CO_2 + H_2O$$ 13. $$NH_4ClO_4$$ \rightarrow N_2 + Cl_2 + O_2 + H_2O 14. $$SiO_2$$ + HF \rightarrow SiF_4 + H_2O NUCLIDE SYMBOLS: (E27) | Name | Nuclide symbol | Mass # | Atomic # | Protons | Electrons | Neutrons | |-------------------|---------------------------|--------|----------|---------|-----------|----------| | Carbon (C) | | 13 | | | 6 | | | Potassium (K) ion | | 39 | | 19 | 18 | | | Oxygen (O) | 17 O | | | | | | | Aluminum ion (Al) | | | | 13 | 10 | 14 | | Chromium (Cr) | | 52 | | | 24 | | | Phosphide (P) ion | ${}^{31}_{15} P - {}^{3}$ | | | | | | | Silver (Ag) | | | 47 | | | 61 | | Iodide ion (I) | | 127 | | 53 | 54 | | | Barium
(Ba) | | | 56 | | | 81 | | Zirconium (Zr) | $_{40}^{91} Zr$ | | | | | | | Mercury (II) ion | | 201 | 80 | | 78 | | | Tin (II) ion | | | 50 | | 48 | 68 | | Xenon (Xe) | | 131 | 54 | | | | | Arsenide (As) ion | | | | 33 | 36 | 42 | *NAMES OF IONS (E28)* – You need to know all of the ions on the Oxidation number chart I handed out. These include all of the ones you learned in Chemistry 1, but also about 12 more. You might still have your flashcards from that test... ## NAMING/FORMULA WRITING FOR INORGANIC COMPOUNDS (E-29) **PART A: Ionic Compounds & hydrated ionic compounds** Ex: calcium chloride = $CaCl_2$ (Final answers should NOT have charges on ions; there are no prefixes either) | Write the correct formula. | Name the following compounds. | | | | |--|--|--|--|--| | 1. zinc fluoride | 1. AgNO ₃ | | | | | 2. iron (III) acetate | 2. SrF ₂ | | | | | 3. calcium phosphate | 3. NiBr ₂ | | | | | 4. manganese (II) sulfide | 4. Cu ₂ O | | | | | 5. ammonium sulfite | 5. MnCl ₂ | | | | | 6. strontium nitrate | 6. Zn(OH) ₂ | | | | | 7. chromium (III) oxide | 7. KI | | | | | 8. lead (II) hydroxide | 8. SnCrO ₄ | | | | | 9. calcium bicarbonate | 9. Ni(ClO ₃) ₂ | | | | | 10. silver (I) chlorate | 10. Ba(C ₂ H ₃ O ₂) ₂ | | | | | 11. chromium (III) chloride trihydrate | 11. CuCl ₂ • 2 H ₂ O | | | | | 12. nickel (II) nitrate heptahydrate | 12. Fe(NO ₃) ₃ • 6 H ₂ O | | | | | PART B: Molecules Ex: diphosphorus pentoxide = P_2O_5 (There ARE prefixes used here.) | | | | | | 1. carbon dioxide | 1. N ₂ O ₅ | | | | | 2. dinitrogen monoxide | 2. SiCl ₅ | | | | | 3. tetranitrogen decasulfide | 3. NF ₃ | | | | | 4. xenon trioxide | 4. P ₄ S ₆ | | | | | 5. sulfur hexafluoride | 5. NO | | | | | PART C: Acids Remember there are 2 kinds of acids – binary and oxyacids | | | | | | 1. hydroiodic acid | 1. H ₂ CO ₃ | | | | | 2. nitrous acid | 2. HBr | | | | | 3. sulfuric acid | 3. HF | | | | | 4. carbonous acid | 4. H ₂ SO ₃ | | | | | 5. hydrosulfuric acid | 5. HNO ₃ | | | |