Malley School District Chemistry - Organic: Unit 4 - Geometry & Orbitals					
Unit #: ACVSD-00068650			Date(s)	11-17-20	18 to 12-19-2018
Team: Kristir Grade(s): 11 Subject(s): S	Team: Kristin Hurrelbrink (Author) Grade(s): 11, 12 Subject(s): Science				
		Unit F	Focus		
This unit focuses on how atomic orbitals relate to organic chemistry and the types of bonding that are used. Students will use VSEPR Theory to determine the type of hybridization occurring, the orbitals and quantity of orbitals used to create the new hybrid orbitals, and how to assign the molecular geometry and bond angles of the molecule.					
	Prior Learnings/Connection				
Students mus	Students must know how to read Bond-Line structures, have experience with VSEPR Theory, and how to draw/read Lewis Structures.				
	Stage 1:	Desired Result	s - Key U	Inderst	andings
	Standard(s)			Tran	sfer
Pennsylvani Eligible Con	a Assessment Anchors and tent	What kinds of long-term, independent accomplishments are desired? Students will be able to independently use their learning to			
Chemistry: 1	<i>1</i> the physical properties of matter tomic or molecular structure <i>A.1.1.4</i> ain how atoms combine to form	Meaning			
 Relate to its at 		Understa	anding(s)		Essential Question(s)
• 1 Expla		What specifically do you understand? What infer make? Students will un	u want studen rences should derstand that.	ts to they 	What thought-provoking questions will foster inquiry, meaning making, and transfer? Students will keep considering
bonding Classify non-pol <i>CHEM.E</i> Use illu a moleo Recogn of mode the bor	g. <i>CHEM.B.1.3.1</i> a bond as being polar covalent, ar covalent, or ionic. <i>3.1.3.2</i> strations to predict the polarity of cule. <i>CHEM.B.1.3.3</i> ize and describe different types els that can be used to illustrate ds that hold atoms together in a	U1 Students will under • s orbitals an • p orbitals h • a bond is for of one atom electron of orbitals • when two e	erstand re spherical in ave a dumbbe ormed when ar n overlaps with another atom electrons are si	shape ell shape n electron n an in atomic hared, it	 Q1 How do orbitals for electrons influence the type of bonding? Why do different types of hybridization have different shapes? How can the hybridization (or lack of) create different types of bonds (single, double, triple)?

 compound (e.g., computer models, ball- and-stick models, graphical models, solid-sphere models, structural formulas, skeletal formulas, Lewis dot structures). <i>CHEM.B.1.4.1</i> Utilize Lewis dot structures to predict the structure and bonding in simple compounds. <i>CHEM.B.1.4.2</i> 	 atoms in the second row (C, N, O, F) have one s orbital and three p orbitals in their valence shell orbitals mix together to create hybridized or hybrid orbitals (sp³, sp², and sp) which have a lower energy than the original p orbital(s) used, but more energy than the s orbital used because the hybrid orbitals have a lower average energy, they are more stable if 1 s orbital is mixed with 3 p orbitals, 4 new "sp³ hybridized orbitals" will be created if 1 s orbital is mixed with 2 p orbitals, 3 new "sp² hybridized orbitals" will be created, with 1 remaining unhybridized p orbital if 1 s orbital is mixed with 1 p orbital, 2 new "sp hybridized orbitals" will be created, with 2 remaining unhybridized p orbitals hybridized orbitals can be used to either hold a lone pair of electrons, or overlap to form a sigma (single) bond with another atom unhybridized p orbitals can overlap between atoms to form an additional pi bond (double bond). the type of hybridization occurring can be determined from the sum of lone pairs and the number of bonding regions if the sum is 4, then you have 4 sp³ orbitals = tetrahedral geometry, 109.5 BA if the sum is 3, then you have 3 sp² orbitals + 1 p 	

orbital = trigonal planar	
orbitar – trigoriar piallar,	
120 BA	
if the sume is 2 there were	
 ii the sum is 2, then you 	
have 2 sp orbitals + 2 p	
orbitals = linear, 180 BA	
 "Bent" molecules are from lone 	
pairs	
Acquisition of k	nowledge and Skill
Knowledge	Skill(s)
nat facts and basic concepts should studen	s What discrete skills and processes should
now and he able to recall? Students will	students he able to use? Students will be chilled
now	at
(1 Students will be able to define and	S1 Students will be able to
T Students will be able to define allo	ST Students will be able to
appropriately use the following	
vocabulary	 describe the shape and quantities
vocabulary	of s and n orbitals in different
 molecular geometry 	types of hybridizations
 valence shell electrons 	 draw energy-orbital diagrams of
 hybridization 	each type of hybridization and the
 hybridization state 	resulting hybridized and if
	applicable, unhybridized orbitals
 sn³ hybridization 	 determine the type of
	hybridization accurring in a
 sp² hybridization 	nybridization occurring in a
	molecule by counting the number
 sp hybridization 	of lone pairs and bonding regions
 s orbital 	or ione pairs and bonding regions
	around a center atom of a
 p orbital 	molecule base on a bond-line or
 Valence Shell Electron Pair 	
	Lewis structure of the molecule
Repuision Theory (VSEPR)	 Use VSEPR Theory to assign the
 lone pair 	
	molecular geometry of a molecule
 linear geometry 	hase on a hond-line or Lewis
 trigonal planar geometry 	
totrahodral socratry	structure of the molecule
 tetraneoral geometry 	 use VSEPR Theory to assign the
 bent geometry 	hand angle (-) of a mode and b
 bond angles 	bond angle(s) of a molecule base
	on a bond-line or Lewis structure
	of the melocule
	of the molecule
	 use a model kit to build molecules.
	then determine the type of
	then determine the type of
	hybridization, geometry, and bond

		angles occurring around each central atom • draw and explain how/what orbitals are overlapping in a molecule to generate the bond(s)		
		present		
	Stage 2: Assessment Evidence			
Performance Task(s)				
Alignment	Code	Assessment Evidence		
	PT1	Untitled		
		Performance Task		
		Formative:		
		 Student note packet highlighting and practice problems Practice with building organic molecules from kits and bond-line drawings and in-class problems Drawing the hybridization of atomic orbitals to create new hybrid orbitals Lab - Building organic molecules using the orbital attachments 		
		Summative:		
		 Quick quiz on type of hybrization, molecular geometry, and bond angles Chapter 4 test Molecule Lab concept questions 		
		Stage 3: Learning Plan		
Alignment	Code	Learning Activities		
	LA1	Untitled		
		Learning Activity		
		The students will follow the learning plan for 2 weeks:		

-	
	Day 1:
	 The students will read the introduction to "Chapter 4 - Geometry" They will look at and discuss why the shapes of molecules are important. Using molecules, they will be able to see the effect that sterics (shapes) of molecules could have on reactions. We will discuss examples of hybrid things they have seen in their own life and question how it might apply to this chapter by scanning through the rest of the packet.
	Days 2 & 3:
	 The students will move on to Section 1 - Orbitals and Hybridization States. They will read, I highlight, and annotate the section. The shapes of the molecules were learned in chem I, but must be reviewed We will use the formula of "Lone pairs + # bonding regions" around a center atom to determine the type of hybridization occurring. We will make a list of the different types of orbitals used in each type of hybridization. Homework: complete the in-packet exercises of 4.2 - 4.8.
	Day 4:
	 We will go over the homework from day 3. We will then take notes on how to draw the different orbital diagrams for each type of hybridization. We will make special note to push the concept that "What you put in is what you get out" when it comes to the quantities of orbitals.
	Day 5:
	 We will work through practice problems on the board to identify what type of hybridization is occurring in each of the Lewis or bond-line structures. The students will complete the examples in their notebooks and work with their lab partner. Time permitting, they may put their answers on the board to share with the class.
	Days 6 & 7:
	 The students will read, annotate, and highlight section 4.2 - Geometry. We will add the types of molecular geometries and bond angles into their notes that they took for the different types of hybridization. They will complete the in-packet practice problems 4.10 - 4.17. Time permitting, they will look at the additional organic text book pictures showing how the hybridized and unhybridized orbitals overlap.
	Day 8:
	 We will review the types of hybridization, molecular geometries, and bond angles by completing several practice problems together on the white board. They will then watch the Crash Course Chemistry video "Orbitals" and Professor Dave's "Organic

Hybridization Orbitals" from YouTube.
Day 9:
• We will review all of the concepts of the packet, going back through and discussing the important parts of the text that were highlighted and annotated.
Day 10:
• The students will take their Chapter 4 Test for hybridization, molecular geometries, and bond angles.