Please Read the following if you have downloaded this resource:

*Please click the "follow" button at the link below to stay updated on sales and new resources.

https://www.teacherspayteachers.com/Store/Mr-Cuvs-Chemistry-Class

If you aren't interested in checking out my page - no worries! I hope this formula sheet is still helpful! I have it as a poster in my own classroom for honors chemistry.

*The enclosed document is NOT customizable. There is a fully editable version available here Editable Formula Sheet . You can add or remove any formulas you would like to with Microsoft equation editor in WORD.

Thanks for your support and I welcome any feedback you may have.

Many other great resources are available as well!

Just click the pictures below or check out my store!

4 Total Worksheets

CHEMISTRY EQUATIONS AND CONSTANTS

LAB AND STOICHIOMETRY

%
$$Error = \frac{|measured\ value - accepted\ value|}{accepted\ value} \times 100$$

 $| \ | = denotes absolute value in % error equation$

% composition by mass =
$$\frac{mass\ of\ part}{mass\ of\ whole} \times 100$$

%
$$yield = \frac{actual\ yield}{theoretical\ yield} \times 100$$

$$n=rac{m}{M}$$

GASES AND LIQUIDS

PV = nRT

$$n = \frac{m}{M}$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$P_{TOTAL} = P_A + P_B + P_C \dots$$

$$K = {}^{\circ}C + 273$$

$$D = \frac{m}{V}$$

$$P_A = P_{TOTAL} \times X_A$$
, where $X_A = \frac{moles\ of\ A}{total\ moles}$

SOLUTIONS

molarity, M = moles of solute per liter of solution

 $molality = moles\ of\ solute\ per\ kilogram\ solvent$

$$\Delta T_f = iK_f \times molality$$

$$\Delta T_b = iK_b \times molality$$

Dilution Formula: $M_1V_1 = M_2V_2$

SYMBOLS

P = pressure

V = volume

n = number of moles

T = Temperature

M = molar mass

D = density

m = mass

 X_A = mole fraction

M = molarity

 K_f = molal freezing-point depression constant

 K_b = molal boiling-point elevation constant

i = van't hoff factor

CONSTANTS

Gas Constant,
$$R = 0.0821 \frac{L \ atm}{mol \ K}$$

= 62.4 $\frac{L \ torr}{mol \ K}$

$$K_f for H_2O = 1.86 \frac{^{\circ}\text{C } kg}{mol}$$

$$K_b$$
 for $H_2O = 0.512 \frac{\text{°C } kg}{mol}$

$$STP = 0.00 \, ^{\circ}C \, and \, 1.00 \, atm$$

Avogadro's number =
$$6.02 \times 10^{23} \frac{\text{molecules}}{\text{mol}}$$

ATOMIC STRUCTURE

$$E = hv$$

$$c = \lambda v$$

THERMODYNAMICS

$$\Delta G_{rxn} = \sum \Delta G_f^{\circ} \ products - \sum \Delta G_f^{\circ} \ reactants$$

$$\Delta H_{rxn} = \sum \Delta H_f^{\circ} \ products - \sum \Delta H_f^{\circ} \ reactants$$

$$\Delta S_{rxn} = \sum S^{\circ} products - \sum S^{\circ} reactants$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$\Delta G^{\circ} = -n_{e}FE^{\circ}$$

$$q = mc\Delta T$$
 where $q_P = \Delta H$

ACIDS AND BASES

$$pH = -\log [H^+]$$

$$pOH = -\log [OH^-]$$

$$14 = pH + pOH$$

$$[H^+] = 10^{-pH}$$

$$[OH^{-}] = 10^{-pOH}$$

$$[OH^{-}] \times [H^{+}] = 1.0 \times 10^{-14} @ 25^{\circ}C$$

NUCLEAR CHEMISTRY

of half lifes =
$$\frac{Total\ Time\ Elapsed}{Half\ Life\ Time}$$

Fraction Remaining = $(\frac{1}{2})^{\# \text{ of half lifes}}$

Sample Remaining = Original Sample \times Fraction Remaining

SYMBOLS AND CONSTANTS

E = energy

v = frequency

 $\lambda = wavelength in meters$

m = mass

Speed of light, $c = 3.0 \times 10^8 \frac{meters}{second}$

Planck's constant, h = 6.63 x 10^{-34} *J s*

Faraday's constant, F= $96,500 \frac{coulombs}{mole\ of\ electrions}$

SYMBOLS

 $\Delta H^{\circ} = standard\ enthalpy$

 $\Delta G^{\circ} = standard\ free\ energy$

 $\Delta S^{\circ} = standard\ entropy$

T = temperature

 n_{e-} = number of moles of electrons

q = heat

m = mass

c = *specific heat capacity*

