M Witting, revised

Simulations at http://phet.colorado.edu/

Basic Stoichiometry PhET Lab

Name:

1 ≑

Let's make some sandviches!

When we bake/cook something, we use a specific amount of each ingredient. Imagine if you made a batch of cookies and used way too many eggs, or not enough sugar. YUCK! In chemistry, reactions proceed with very specific recipes. The study of these recipes is stoichiometry. When the reactants are present in the correct amounts, the reaction will produce products. What happens if there are more or less of some of the reactants present?

Reactants, Products ers

	and Lettov
Vocabulary: Before you begin, please define the following: Limiting Reactant:	
Excess Reactant:	
Mole Ratio:	
Diatomic Molecule:	
Mole:	
Hydrocarbon:	

<u>Procedure</u>: PhET Simulations \rightarrow Play with the Sims \rightarrow Chemistry \rightarrow Reactants, Products, and Leftovers Run Now! If a yellow bar drops down in your browser, click on it and select "Allow Blocked Content"

Sandwich Shop **Part 1: Making Sandviches:**

- **O** Cheese Sandwich is a simulation of a two-reactant synthesis reaction. In this case, one 1. The reactant will be *limiting*, while the other will be in excess.
- 2. Take some time and familiarize yourself with the simulation.
- 2 3. Set the reaction to a simple mole ratio of 2:1:1
- 4. Complete the table below while making tasty cheese sandwiches:

Bread Used	Cheese Used	Sandwiches Made	Excess Bread	Excess Cheese
5 slices	5 slices			
4 slices	3slices			
		2 sandwiches	1 slice	0 slices
6 slices		3 sandwiches		4 slices
	1	1		

Part 2: Real Chemical Reactions:

Real Reaction

- 5. Now let's work with real chemical reaction, one that creates a very entertaining BOOM!
- 6. What is the mole ratio for the reaction of hydrogen and oxygen to produce water?

Name:

$$_H_2 + _O_2 \rightarrow _H_2O$$

7. Complete the table below while making water H_2O from hydrogen H_2 and oxygen O_2 :

	1			
Hydrogen Molecules H ₂	Oxygen Molecules O ₂	Water Molecules H ₂ O	Excess H ₂	Excess O_2
-	-	_	_	_
4 molecules	4 molecules			
7 molecules	6 molecules			
		4 molecules	0 molecules	0 molecules
9 moles	8 moles			
7 1110105	0 110105			
		4 moles	1 moles	0 moles
		4 1110105	1 110105	0 110105
4.0 moles	2.5 moles			
4.0 moles	2.5 mores			
1.5 moles		1.5 moles	0 moles	0 moles
1.5 moles		1.5 moles	0 110105	0 mores

8. Notice that the labels changed from **molecules** to **moles**. This does not change the mole ratio, as a mole is simply a large number of molecules. How many molecules is a mole?

9. Now try producing **ammonia**, a very important chemical in industry and farming.

10. What is the mole ratio for the production of ammonia? $N_2 + H_2 \rightarrow NH_3$

11. Complete the table below:

Moles N ₂	Moles H ₂	Moles NH ₃	Excess N ₂	Excess H ₂
3 moles	6 moles			
6 moles	3 moles			
		4 moles	2 moles	0 moles
1.5 moles	4.0 moles			

12. Combustion of hydrocarbons like methane CH₄ produces two products, water and carbon dioxide CO₂.

13. What is the mole ratio for the combustion of methane? $_CH_4 + _O_2 \rightarrow _CO_2 + _H_2O$

14. Complete the table below: WATCH FOR FRACTIONS

mol CH ₄	mol O ₂	mol CO ₂	mol H ₂ O	Excess mol CH ₄	Excess mol O ₂
4 mol	4 mol				
3 mol	6 mol				
		2 mol	4 mol		
		3 mol			
				O and al	

15. **The BEST PART**: Challenge other members of your lab group to the **Game!**

Your First Score:_____lvl__ Your Best Score:_____lvl__ Your Lab Group's Best Score:_____lvl__

You may take this lab home to help you with the post-lab homework sheet, due next time.

Basic Stoichiometry Post-Lab Homework Exercises

1. Load the "*Reactants, Products, and Leftovers*" simulation and work through each of the levels of the **Game!** At home, you can find the simulation by going to http://phet.colorado.edu/ or googling "phet." You may have to download or update the version of *Java* on your computer.

Complete each exercise on your own. Remember to use proper units and labels.

2. For the reaction $N_2 + O_2 \rightarrow NO_2$ determine the correct lowest mole ratio.

3. For the reaction $_SO_2 + _O_2 \rightarrow _SO_3$ determine the correct lowest mole ratio.

4. For the reaction $P_4 + 6Cl_2 \rightarrow 4PCl_3$, determine how many moles of chlorine Cl_2 would be needed to react with 3 moles of phosphorus P_4 to entirely use up all the phosphorus. 4)_____

5. If 5 moles of P_4 reacted with 22 moles Cl_2 according to the above reaction, d	etermine:
a) How many moles PCl ₃ are produced	a)
b) How many moles of P_4 are left in excess after the reaction (if any)	b)

c) How many moles of Cl_2 are left in excess after the reaction (if any)

In reality, reactants don't have to react in perfect whole-numbers of moles. In a two-reactant synthesis reaction, usually <u>one</u> reactant gets entirely used up (and determines how much product is made), even if that means using fractions of a mole of reactant. For instance, when solid, metallic aluminum Al and red, liquid bromine Br₂ are brought together, they make a white solid according to the reaction $2Al + 3Br_2 \rightarrow 2AlBr_3$. If 5.0 moles of aluminum Al was reacted with 10 moles bromine Br₂, all five moles of aluminum would react, with only 7.5 moles bromine. (2:3 mole ratio) This would produce only 5.0 moles of AlBr₃, leaving 2.5 moles of excess Br₂ behind.

6. Now assume 3 moles Al and 4 moles Br_2 react	
a)Which chemical is the limiting reactant?	a)
b)Which chemical must be the <i>excess reactant</i> ?	b)
c)How much (in moles) AlBr ₃ gets produced? SHOW WORK HERE:	c)
d)If all the limiting reactant gets used up, how much of the excess reactant is left?	d)

SHOW WORK HERE:

7. What is the maximum amount (in moles) of NaCl that can be produced from 4.5 moles of Na and 3.5 moles of Cl_2 according to the reaction $Na + Cl_2 \rightarrow NaCl$ (left for you to balance). SHOW WORK HERE:

7)_____

c)_____