Chemical Changes and Reactions - Guided Notes

Matter can be describ	bed in terms of two kin	ıds of properties:	
1	_		
2			
A	is a ch	aracteristic of a subst	tance that can
be observed without c	changing the substance	into another substance	e.
Examples: ice			
		,, and	
A	 is a ch	aracteristic of a subst	tance that
describes its ability to	o change into other sub	stances.	
Examples: when	burns, it c	ombines with oxygen i	n the air to
	, magnesium oxide	and	are
other examples.			
<u>Changes in Matter</u>			
A	is any change tha	t alters the form or a	ppearance of a
substance, but does no	ot make the substance	into another substance	e. Other
examples :		, and	
A change in matter the change, or	at produces one or mor 	'e new substances, is a	chemical
Chemical reactions inv	volve two main kinds of	changes that you can c	bserve.
1			

One way to detect		·		in the	:
change,	formation of a _		, and producti	ion of a	
<u>Changes in Energy</u>					
As matter changes, change occurs during				_ energy.	This
	-	are re	eactions in whi	ich energy	is
the form of		are re	eactions that i	release en	ergy in
Rate of Reactions	·				
	tionsolosions. Others, l				•
	control rate of re	•			
■ They can also	use substances co	alled catalyst	s and inhibito	rs.	
	_is a material that nergy, or energy n			•	owering
– Example	: <u>enzymes</u> in our b	oodies.			
A material used t usually work by p	o decrease the ro				пеу

Changes in Properties

 Example: <u>preservatives</u> added to food to prevent it from becoming stale or spoiling.

Name:		2/5/18 Ms. Carter
Describing Chemical Reactions		
Scientists also usereactions rather than a long se		to describe chemical
 Chemical equations use to summarize a reaction. 		_ and other instead of words
 All chemical equations use reaction. 	: formulas	to represent the substances involved in a
■ A the elements in a compour		ombination of symbols that represents
CO ₂		
CO2 is the formula for carb	<u>on dioxide</u>	<u>2</u> .
•	•	und is made up of the elements carbon atom and <u>2</u> oxygen atoms.
Structure of an Equation		
All chemical equations have	ve a commo	on structure.
A chemical equation tells you substances you get		tances you and the
■ The substances at the be	ginning are	e called the
■ When the reaction is com	plete, you	have new substances called

Conservation of Mass

The sum is <u>equal</u> to its parts. This is an example of the <u>Conservation of Mass.</u>
■ This principle, the conservation of mass, states that during a chemical reaction, matter is
This means that all the atoms present at the start of the reaction are still present at the end.
Classifying Chemical Equations
Many chemical reactions are classified into one of three categories.
1
2
3
Synthesis
When two or more elements or compounds combine to make a more complex substance, the process is called
 Example: Hydrogen and oxygen join together to form water.
Decomposition
breaks down compounds into simpler products.
$2H_2O \rightarrow 2H_2O + O_2$
Hydrogen peroxide eventually decomposes into water and oxygen.
Replacement
When one element replaces another in a compound, or when two elements in

When one element replaces another in a compound, or when two elements in different compounds trade places, this process is called ______.

$$2Cu_2O + C \rightarrow 4Cu + CO_2$$

Copper metal can be obtained by heating copper oxide with carbon. The carbon <u>replaces</u> the copper.