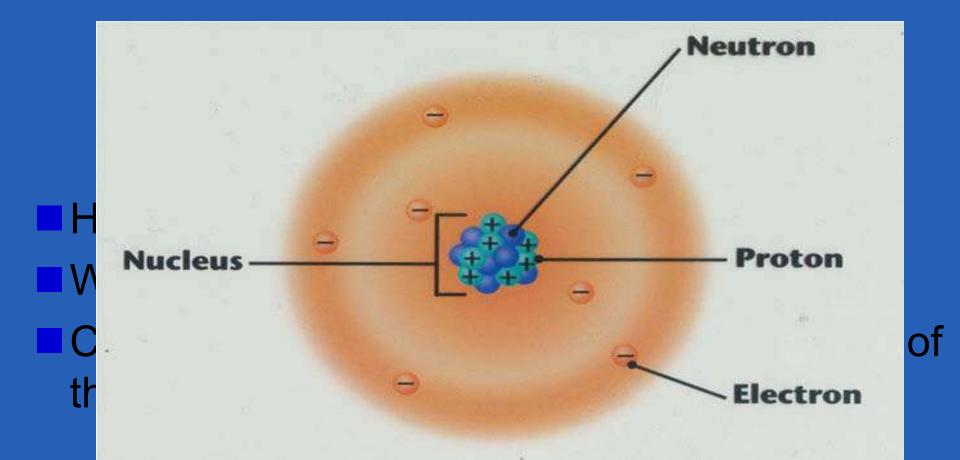


# **Chemistry of Matter**

**Properties and Interactions of Elements** 

MS State Objectives 2.a. and 2.b.




#### **Elements**



- Elements are substances that cannot be broken down into simpler substances.
  - Made up of only one type of atom
  - ■Basic building blocks of matter
- The smallest particle of an element is an atom.

#### Review

- How many protons does this element have?
- How many electrons does this element have?
- What is the atomic mass?





# Developing the Periodic table

IV

**C** 12.0

Si

Τi

47.9

**Zr** 91.2

Sn

Pb 207

Th

14.0

31.0

50.9

Nb

92.9

Ta

181

Sb

74.9

S

**Se** 79.0

**Te** 

**Cr** 52.0

Мо

95.9

184

Ш

**B** 10.8

ΑI

88.9

115

204

**La** 139

1.01

Na

23.0

39 1

Rb

Cu

**Be** 9.01

**Mg** 24.3

Ca

40.1

Sr

87.6

Cd

112

Ba

**Zn** 65.4





Dmitri Mendeleev, a Russian scientist discovered a set of patterns that seemed to apply to all elements

VII

19.0

CI

Br

79.9

**I** 127

Mn

54.9

**Fe** 55.9

Ru

**Os** 194

arranged the elements in order of increasing <u>atomic</u> <u>mass</u> (protons + neutrons in the nucleus)



#### **Modern Periodic Table**

In 1913, Henry Moseley discovered a way to measure the positive charge in the nucleus to determine the atomic number

arranged the elements by increasing <u>atomic</u>

number instead of atomic mass

| 1<br>H<br>1.01<br>3<br>Li<br>6.94<br>11<br>Na | 2<br>Be<br>9.01<br>12<br>Mq |                | I        |               | ric<br>C<br>Ele |         | 13<br>5<br>B<br>10.81 | 14<br>6<br>C<br>12.01<br>14<br>Si | 15<br>7<br>N<br>14.01<br>15<br>P | 16<br>8<br>0<br>16.00 | 17<br>9<br>F<br>19.00 | 18<br>2<br>He<br>4.00<br>10<br>Ne<br>20.18<br>18<br>Ar |          |          |          |          |          |
|-----------------------------------------------|-----------------------------|----------------|----------|---------------|-----------------|---------|-----------------------|-----------------------------------|----------------------------------|-----------------------|-----------------------|--------------------------------------------------------|----------|----------|----------|----------|----------|
| 22.99                                         | 24.30                       | 3              | 4        | 5             | 6               | 7       | 8                     | 12                                | 26.98                            | 28.09                 | 30.97                 | 32.07                                                  | 35.45    | 39.95    |          |          |          |
| 19                                            | 20                          | 21             | 22       | 23            | 24              | 25      | 26                    | 27                                | 30                               | 31                    | 32                    | 33                                                     | 34       | 35       | 36       |          |          |
| K                                             | Ca                          | Sc             | Ti       | V             | Cr              | Mn      | Fe                    | Co                                | Zn                               | Ga                    | Ge                    | As                                                     | Se       | Br       | Kr       |          |          |
| 30.10                                         | 40.08                       | 44.96          | 47.88    | 50.94         | 52.00           | 54.94   | 55.85                 | 58.93                             | 65.39                            | 69.72                 | 72.61                 | 74.92                                                  | 78.96    | 79.90    | 83.80    |          |          |
| 37                                            | 38                          | 39             | _40      | 41            | 42              | 43      | _44                   | 45                                | 46                               | 47                    | 48                    | 49                                                     | 50       | 51       | _52      | 53       | 54       |
| Rb                                            | Sr                          | Υ              | Zr       | Nb            | Мо              | Tc      | Ru                    | Rh                                | Pd                               | Ag                    | Cd                    | In                                                     | Sn       | Sb       | Te       | 1        | Xe       |
| 85.47                                         | 87.62                       | 88.91          | 91.22    | 92.91         | 95.94           | (97.91) | 101.07                | 102.91                            | 106.42                           | 107.87                | 112.41                | 114.82                                                 | 118.71   | 121.75   | 127.60   | 126.90   | 131.29   |
| 55                                            | 56                          | 57             | 72       | <sup>73</sup> | 74              | 75      | 76                    | 77                                | 78                               | 79                    | 80                    | 81                                                     | 82       | 83<br>D: | 84       | 85       | 86       |
| Cs                                            | Ba                          | La             | Hf       | Та            | W               | Re      | Os                    | Ir                                | Pt                               | Au                    | Hg                    | 11                                                     | Pb       | Bi       | Po       | At       | Kn       |
| 132.91                                        | 137.33                      | 138.91         | 178.49   | 180.95        | 183.85          | 186.21  | 190.23                | 192.22                            | 195.08                           | 196.97                | 200.59                | 204.38                                                 | 207.2    | 208.98   | (208.98) | (209.99) | (222.02) |
| Fr                                            | Ra                          |                | Rf       | На            | Sq              |         |                       |                                   |                                  |                       |                       |                                                        |          |          |          |          |          |
| []                                            | (226.03)                    | AC<br>(227.03) | (261.11) | (262.11)      | (263,12)        |         |                       |                                   |                                  |                       |                       |                                                        |          |          |          |          |          |
| (223.02)                                      | (226.03)                    | (227.03)       | (261.11) | (262.11)      | (263.12)        |         |                       |                                   |                                  |                       |                       |                                                        |          |          |          |          |          |
|                                               |                             |                |          | 58            | 59              | 60      | 61                    | 62                                | 63                               | 64                    | 65                    | 66                                                     | 67       | 68       | 69       | 70       | 71       |
|                                               |                             |                |          | Ce            | Pr              | Nd      | Pm                    | Sm                                | Eu                               | Gd                    | Tb                    | Dv                                                     | Но       | Er       | Tm       | Yb       | Lu       |
|                                               |                             |                |          | 140.12        | 140.91          | 144.24  | (144.91)              | 150.36                            | 151.97                           | 157.25                | 158.93                | 162.50                                                 | 164.93   | 167.26   | 168.93   | 173.04   | 174.97   |
|                                               |                             |                |          | 90            | 91              | 92      | 93                    | 94                                | 95                               | 96                    | 97                    | 98                                                     | 99       | 100      | 101      | 102      | 103      |
|                                               |                             |                |          | Th            | Pa              | U       | Np                    | Pu                                | Am                               | Cm                    | Bk                    | Cf                                                     | Es       | Fm       | Md       | No       | Lr       |
|                                               |                             |                |          | 232.04        | 231.04          | 238.03  | (237.05)              | (244.06)                          | (243.06)                         | (247.07)              | (247.07)              | (251.08)                                               | (252.08) | (257.10) | (258.10) | (259.10) | (262.11) |



#### **Periodic Table**

- Arranged by increasing atomic n<u>umber</u> (proton #)
- Rows are called periods & are labeled 1-7
- There are 18 columns
  - Each column contains a group or family of elements.
  - Groups are elements that have similar physical or chemical properties.
    - Ex. All elements in group 1 are metals & react violently with water.



# **Groups and Periods**

| Topon   Topo | 5 26 27 n Fe Co 38 55.845 58.9 sturn nutbenium rhodi 4 4 45 c Ru R 1 101.07 100, 1 101.07 100, 1 101.07 100, | 28  | 63.546<br>salver<br>47<br><b>Ag</b> | 7ha 30 30 20 30 20 20 20 20 20 20 20 20 20 20 20 20 20 | 31 32 Ge                     | 15<br>P<br>30.074<br>m arsenic<br>33<br>AS<br>74.022<br>antimony<br>51 | auflur diki 16 1                 | 9 10 Ne Ne 20 192 20 192 7 18 CI Ar 463 39 944 463 39 944 67 36 Kr Kr 5004 83 90 83 90 83 90 84 83 90 85 Kr |                                         | соры                                   | žinc                                  | boron<br>5<br>B<br>10,811<br>alumhitum<br>13<br>Al<br>26,982<br>gallium | Carbon 6 C C 17.011 alloon 14 Si 28.000 germanatum | nstropen 7 N 14 cor 7 Phosphorus 15 P 9 20 974 streent | 0xygen 8 0 0 15.000 staffur 16 S 32.004 solectars | Buorino 9 F In 998 chiorino 17 C I 33.432 steomine | Pressum 2 He 40000 100 Ne 20.1900 17900 18 Ar 38.0418 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----|-------------------------------------|--------------------------------------------------------|------------------------------|------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|
| **Actinide series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 20 Ca<br>K Ca<br>39.098 40.076                                                                            |     | 21<br>Sc<br>44,966                  | Ti                                                     | V (                          | 24 2<br>Cr M                                                           | n Fe                             | 27<br>Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28<br>Ni<br>58.693                      | Cu<br>63.546                           | Zn<br>65.39                           | 31<br>Ga                                                                | 32<br>Ge                                           | 33<br>As<br>74.922                                     | 34<br>Se<br>78.96                                 | 35<br>Br<br>79,904                                 | 36<br>Kr                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37 38<br>Rb Sr<br>#5.46# #7.62                                                                               |     | 39<br>Y<br>88 906                   | 40<br>Zr                                               | S-2000 1-20                  | 42 4<br>/lo T                                                          | c P                              | eric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | od                                      | 47<br>Ag                               | 48<br>Cd                              | 49<br>In                                                                | 50<br>Sn                                           | 51<br>Sb<br>121.76                                     | 52<br><b>Te</b>                                   | 53<br>126.90                                       | 54<br>Xe                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55 56<br>Cs Ba<br>132.91 137.33<br>francium rizdium                                                          | 720 | Lu<br>174.97                        | 72<br><b>Hf</b> 178,49 rutherfordium 104               | Ta \\ 180.95 11 dubnium seal | 74 7<br>N R<br>33.84 186<br>porgium bohi<br>106 10                     | e Os<br>21 190,23<br>num hassium | 77<br>Ir<br>192,22<br>moitnerium<br>109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78<br>Pt<br>106,08<br>ununnilium<br>110 | 79<br>Au<br>196,97<br>unununlum<br>111 | 80<br>Hg<br>200.59<br>ununblum<br>112 | 81<br>TI<br>204,38                                                      | Pb<br>207.2<br>ununquadium<br>114                  | 83<br>Bi<br>208,98                                     | 84<br>Po<br>[209]                                 | 85<br><b>At</b><br>(210)                           | 86<br>Rn                                              |

<sup>\*</sup>Lanthanide series

<sup>\* \*</sup> Actinide series

| 5   | La     | Ce       | Pr           | Nd      | Pm    | Sm     | Eu     | 11345940505        | Tb       | Dy       | 67<br><b>Ho</b>         | Er                   | Tm          | 70<br>Yb  |
|-----|--------|----------|--------------|---------|-------|--------|--------|--------------------|----------|----------|-------------------------|----------------------|-------------|-----------|
| - 1 | 138.91 | 140.12   | 149.91       | 144.24  | [145] | 150.36 | 151.96 | 157.25             | 158.93   | 162.50   | 164.93                  | 167.26               | 168.93      | 173.04    |
|     | AC     | 90<br>Th | Pa<br>231.04 | 92<br>U | Np    | Pu     | Am     | curium<br>96<br>Cm | 97<br>Bk | 98<br>Cf | einsteinium<br>99<br>Es | fermium<br>100<br>Fm | Md<br>12583 | No<br>102 |



### **Groups/Families**

Groups 1 and 2 along with Groups 13 and 18 are called the <u>representative</u> elements.

-elements having similar properties.

|                   |                     |             |                    |                   | -                  |                   |                  |                  |                   |                    | 11.71.71       |                   |                     |                   |                      |                    |                    |                 |
|-------------------|---------------------|-------------|--------------------|-------------------|--------------------|-------------------|------------------|------------------|-------------------|--------------------|----------------|-------------------|---------------------|-------------------|----------------------|--------------------|--------------------|-----------------|
| hydrogen          | 1,750               |             |                    |                   |                    |                   |                  |                  |                   |                    |                |                   | 0000                |                   |                      |                    | 1,7620             | helium          |
|                   |                     |             |                    |                   |                    |                   |                  |                  |                   |                    |                |                   |                     |                   |                      |                    |                    | 2               |
| H                 |                     |             |                    |                   |                    |                   |                  |                  |                   |                    |                |                   |                     |                   |                      |                    |                    | не              |
| 1.0079            |                     | 10          |                    |                   |                    |                   |                  |                  |                   |                    |                | F                 |                     |                   |                      |                    | firm-time          | 4.0026          |
| lithium<br>3      | beryllium<br>4      |             |                    |                   |                    |                   |                  |                  |                   |                    |                |                   | 5 boion             | carbon<br>6       | nitrogen<br>7        | oxygen<br>8        | fluorina<br>9      | 10              |
| 1 :               | Da                  |             |                    |                   |                    |                   |                  |                  |                   |                    |                |                   |                     | -                 | M                    | 0.386              | F                  |                 |
| L-1               | Be                  |             |                    |                   |                    |                   |                  |                  |                   |                    |                |                   | В                   | C                 | N                    | 0                  | - 1770 man         | Ne              |
| 6,941<br>sodium   | 9.0122<br>magnesium |             |                    |                   |                    |                   |                  |                  |                   |                    |                | -                 | 10,811<br>aluminium | 12:011<br>silicon | 14.007<br>phosphorus | 15.999<br>sultur   | 18,998<br>chiorine | 20,180<br>argon |
| 11                | 12                  |             |                    |                   |                    |                   |                  |                  |                   |                    |                |                   | 13                  | 14                | 15                   | 16                 | 17                 | 18              |
| Na                | Ma                  |             |                    |                   |                    |                   |                  |                  |                   |                    |                |                   | AI                  | Si                | Р                    | S                  | CI                 | Ar              |
| 22 990            | 24.305              |             |                    |                   |                    |                   |                  |                  |                   |                    |                |                   | 26,982              | 28 086            | 30.974               | 32.065             | 35.453             | 39.948          |
| potassium         | calcium             |             | scandium           | litanium          | vanadium           | ehromium          | manganese        | Iron             | ectalt            | nickel             | copper         | zine              | gallium             | germanium         | arsenic              | sekinlum           | bromine            | krypton         |
| 19                | 20                  |             | 21                 | 22                | 23                 | 24                | 25               | 26               | 27                | 28                 | 29             | 30                | 31                  | 32                | 33                   | 34                 | 35                 | 36              |
| I K               | Ca                  |             | Sc                 | Ti                | V                  | Cr                | Mn               | Fe               | Co                | Ni                 | Cu             | Zn                | Ga                  | Ge                | As                   | Se                 | Br                 | Kr              |
| 39.098            | 40.078              |             | 44,956             | 47.867            | 50.942             | 51,996            | 54,938           | 55.845           | 58.933            | 58.693             | 63.546         | 65.39             | 69.723              | 72.61             | 74.922               | 78.96              | 79.904             | 83.80           |
| rubidium<br>37    | strontium<br>38     |             | yttrum<br>39       | zirconum<br>40    | niobum<br>41       | molybdenum<br>42  | technetium<br>43 | ruthenium<br>44  | rhodium<br>45     | palladium<br>46    | silver<br>47   | cadmium<br>48     | 49                  | 50                | antimony<br>51       | telurium<br>52     | icdine<br>53       | xenon<br>54     |
| 2000              | 2277                |             | V                  | 0.000             |                    |                   | 228              | 2000             |                   |                    | - Dillion      |                   | 40.33               | 1000              | 200                  | 100000             |                    |                 |
| Rb                | Sr                  |             | T                  | Zr                | Nb                 | Мо                | Tc               | Ru               | Rh                | Pd                 | Ag             | Cd                | In                  | Sn                | Sb                   | Te                 |                    | Xe              |
| 85.468<br>caesium | 87.62<br>barium     |             | 88.906<br>lutetium | 91.224<br>hafnlum | 92.906<br>tantalum | 95.94<br>tungsten | rhenium          | 101.07<br>osmlum | 102.91<br>iridium | 106.42<br>platinum | 107.87<br>gold | 112.41<br>mercury | 114.82<br>thallium  | 118.71<br>lead    | 121.76<br>bismuth    | 127.60<br>polonium | 126,90<br>astatine | 131.29<br>radon |
| 55                | 56                  | 57-70       | 71                 | 72                | 73                 | 74                | 75               | 76               | 77                | 78                 | 79             | 80                | 81                  | 82                | 83                   | 84                 | 85                 | 86              |
| Cs                | Ba                  | *           | Lu                 | Hf                | Ta                 | W                 | Re               | Os               | Ir                | Pt                 | Au             | Hg                | TI                  | Pb                | Bi                   | Po                 | At                 | Rn              |
| 132.91            | 137,33              |             | 174.97             | 178,49            | 180.95             | 183,84            | 186,21           | 190.23           | 192.22            | 195.08             | 196,97         | 200.59            | 204.38              | 207.2             | 208.98               | 15000              | [210]              | [222]           |
| francium          | radium              | Toestania.c | lawren cium        | rutherfordium     | dubnium            | seaborgium        | bohrium          | hassium          | meitnerium        | ununnilium         | unununium      | unurbium          | 204.38              | ununquadium       | 208,865              | [209]              | [210]              | 222             |
| 87                | 88                  | 89-102      | 103                | 104               | 105                | 106               | 107              | 108              | 109               | 110                | 111            | 112               |                     | 114               |                      |                    |                    |                 |
| Fr                | Ra                  | * *         | Lr                 | Rf                | Db                 | Sg                | Bh               | Hs               | Mt                | Uun                | Uuu            | Uub               |                     | Uuq               |                      |                    |                    |                 |
| [223]             | [226]               |             | [262]              | [261]             | [262]              | [266]             | [264]            | [269]            | [268]             | [271]              | [272]          | [277]             |                     | [289]             |                      |                    |                    |                 |

| * | Lan | thanide | series |
|---|-----|---------|--------|
|   |     |         |        |

<sup>\* \*</sup> Actinide series

| lanthanum<br>57 | ceruni<br>58  | praseodymium<br>59 | neodymlum<br>60 | promethium<br>61 | semarlum<br>62  | europtum<br>63  | gadolinium<br>64 | terbium<br>65   | dysprosium<br>66  | holmluri<br>67    | erbium<br>68 | thulium<br>69      | ytterblum<br>70 |
|-----------------|---------------|--------------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|-------------------|-------------------|--------------|--------------------|-----------------|
| La              | Ce            | Pr                 | Nd              | Pm               | Sm              | Eu              | Gd               | Tb              | Dy                | Но                | Er           | Tm                 | Yb              |
| 138.91          | 140.12        | 140.91             | 144.24          | [1.45]           | 150.36          | 151.96          | 157.25           | 158.93          | 162.50            | 164.93            | 167.26       | 168.93             | 173.04          |
| actinium<br>89  | thorium<br>90 | protacilnum<br>91  | uranium<br>92   | neptunium<br>93  | plutentum<br>94 | americium<br>95 | gurium<br>96     | berkelium<br>97 | californium<br>98 | einsteinium<br>99 | 100          | mendelevium<br>101 | nobelium<br>102 |
| Ac              | Th            | Pa                 | U               | Np               | Pu              | Am              | Cm               | Bk              | Cf                | Es                | Fm           | Md                 | No              |
| [227]           | 232.04        | 231.04             | 238.03          | [237]            | [244]           | [243]           | [247]            | [247]           | [251]             | [252]             | [257]        | [258]              | [259]           |



## **Groups/Families**

Groups 3 to 12 are called the transition metals.

| hydrogen<br>1      | · 75                |        | 8                    | 95                      | 8                 | (50                  | 8                    | , Ø.                | 1.72                 | 25,50                | (7),7/              | ₹7.                | 8.5               | 2005                 | (8.5)                                   | 3570                                    | 155              | helium<br>2     |
|--------------------|---------------------|--------|----------------------|-------------------------|-------------------|----------------------|----------------------|---------------------|----------------------|----------------------|---------------------|--------------------|-------------------|----------------------|-----------------------------------------|-----------------------------------------|------------------|-----------------|
| H<br>1,0079        |                     |        |                      |                         |                   |                      |                      |                     |                      |                      |                     |                    |                   |                      |                                         |                                         |                  | He<br>4,0026    |
| lithium<br>3       | beryllium<br>4      | 20     |                      |                         |                   |                      |                      |                     |                      |                      |                     |                    | boron<br><b>5</b> | carbon<br>6          | nifrogen                                | oxygen<br>8                             | fluorina<br>9    | 10<br>10        |
| l i i l            | Be                  |        |                      |                         |                   |                      |                      |                     |                      |                      |                     |                    | -                 |                      | Ń                                       | ô                                       | F                | Ne              |
| 6,941              | 9.0122              |        |                      |                         |                   |                      |                      |                     |                      |                      |                     |                    | 10.811            | 12.011               | 14.007                                  | 15,999                                  | 18,998           |                 |
| sodium             | magnesium           |        |                      |                         |                   |                      |                      |                     |                      |                      |                     |                    | aluminium         | silicon              | phosphorus                              | sulfur                                  | dhiorine         | 20,180<br>argon |
| 11                 | 12                  |        |                      |                         |                   |                      |                      |                     |                      |                      |                     |                    | 13                | 14                   | 15                                      | 16                                      | 17               | 18              |
| Na                 | Mg                  |        |                      |                         |                   |                      |                      |                     |                      |                      |                     |                    | Al                | Si                   | Р                                       | S                                       | CI               | Ar              |
| 22.990             | 24.305              |        |                      |                         |                   |                      |                      |                     |                      |                      |                     |                    | 26,982            | 28.086               | 30.974                                  | 32.065                                  | 35.453           | 39.948          |
| potassium<br>19    | calcium<br>20       |        | scandium<br>21       | iltanlum<br>22          | vanadium<br>23    | ehromium<br>24       | manganese<br>25      | 1ron<br>26          | cobalt<br>27         | nickel<br>28         | copper<br>29        | zine<br>30         | gallium<br>31     | germanium<br>32      | arsenic<br>33                           | sekinlum<br>34                          | bromine<br>35    | krypton<br>36   |
| W                  |                     |        | 100000               | Τi                      | 1/                |                      |                      |                     | 100                  | 1777                 | _                   | 1000               |                   | 28                   |                                         | 350050                                  | 452520           | 12000000        |
| n                  | Ca                  |        | Sc                   |                         | V                 | Cr                   | Mn                   | Fe                  | Co                   | Ni                   | Cu                  | Zn                 | Ga                | Ge                   | As                                      | Se                                      | Br               | Kr              |
| 39.098<br>rubidium | 40,078<br>strontium |        | 44,956<br>yttrium    | 47.867<br>zirconum      | 50.942<br>niphum  | 51,996<br>molybdenum | 54,938<br>technetium | 55,845<br>ruthenium | 58,933<br>rhodium    | 58.693<br>palladium  | 63,546<br>silver    | 65.39<br>cadmium   | 69.723<br>indium  | 72.61<br>tin         | 74.922<br>antimony                      | 78,96<br>telurum                        | 79,904<br>lodine | 83.90<br>xenon  |
| 37                 | 38                  |        | 39                   | 40                      | 41                | 42                   | 43                   | 44                  | 45                   | 46                   | 47                  | 48                 | 49                | 50                   | 51                                      | 52                                      | 53               | 54              |
| Rb                 | Sr                  |        | Y                    | Zr                      | Nb                | Mo                   | Tc                   | Ru                  | Rh                   | Pd                   | Ag                  | Cd                 | In                | Sn                   | Sb                                      | Te                                      |                  | Xe              |
| 85.468             | 87.62               |        | 88,906               | 91.224                  | 92.906            | 95.94                | [98]                 | 101.07              | 102.91               | 106.42               | 107.87              | 112.41             | 114.82            | 118.71               | 121.76                                  | 127.60                                  | 126.90           | 131.29          |
| cessium<br>55      | barium<br>56        | 57-70  | luteilum<br>71       | hafnlum<br>72           | tantalum<br>73    | tungsten<br>74       | rhonium<br>75        | osmlum<br>76        | iridium<br>77        | platinum<br>78       | gold<br>79          | mercury<br>80      | thallium<br>81    | 198d<br>82           | bismuth<br>83                           | polonium<br>84                          | astatine<br>85   | radon<br>86     |
|                    | 7_36                |        | - PAGE               |                         |                   | 2003/09/2000         |                      | _                   | 2000 m               | 2222                 |                     |                    | TI                | 7                    | 100000000000000000000000000000000000000 | 100000000000000000000000000000000000000 |                  | 2.22.23.23.2    |
| Cs                 | Ba                  | *      | Lu                   | Hf                      | Ta                | W                    | Re                   | Os                  | Ir                   | Pt                   | Au                  | Hg                 | - 11              | Pb                   | Bi                                      | Ро                                      | At               | Rn              |
| 132.91<br>francium | 137.33<br>radium    |        | 174.97<br>lawrencium | 178.49<br>rutherfordium | 180.95<br>dubnium | 183.84<br>seaborgium | 186.21<br>bohrium    | 190.23<br>hassium   | 192,22<br>meitnerium | 195.08<br>ununnilium | 196,97<br>unununium | 200,59<br>ununbium | 204.38            | 207.2<br>ununquadium | 208,98                                  | [209]                                   | [210]            | [222]           |
| 87                 | 88                  | 89-102 | 103                  | 104                     | 105               | 106                  | 107                  | 108                 | 109                  | 110                  | 111                 | 112                |                   | 114                  |                                         |                                         |                  |                 |
| Fr                 | Ra                  | * *    | Lr                   | Rf                      | Db                | Sg                   | Bh                   | Hs                  | Mt                   | Uun                  | Uuu                 | Uub                |                   | Uuq                  |                                         |                                         |                  |                 |
| 1223               | [226]               |        | [262]                | (204)                   | [202]             | 1200                 | [204]                | [269]               | (200)                | 19741                | (272)               | (277)              |                   | [289]                |                                         |                                         |                  |                 |

<sup>\*</sup>Lanthanide series

<sup>\*\*</sup>Actinide series

| lanthanum<br>57 | cerum<br>58 | praseodymium<br>59 | neodymlum<br>60 | promethium<br>61 | semarium<br>62 | europium<br>63 | gadelinium<br><b>64</b> | terbium.<br>65 | dysprosium<br>66 | holmlum<br>67 | erbium<br>68 | thulium<br>69 | ytterblum<br>70 |
|-----------------|-------------|--------------------|-----------------|------------------|----------------|----------------|-------------------------|----------------|------------------|---------------|--------------|---------------|-----------------|
| La              | Ce          | Pr                 | Nd              | Pm               | Sm             | Eu             | Gd                      | Tb             | Dy               | Но            | Er           | Tm            | Yb              |
| 138.91          | 140.12      | 140.91             | 144.24          | [1.45]           | 150.36         | 151.96         | 157.25                  | 158.93         | 162.50           | 164.93        | 167.26       | 168.93        | 173.04          |
| actinium        | thortum     | protactinium       | uranium         | neptunium        | plutentum      | americium      | curium                  | berkelium      | californium      | einsteinium   | fermlum      | mendelevium   | nobellum        |
| 89              | 90          | 91                 | 92              | 93               | 94             | 95             | 96                      | 97             | 98               | 99            | 100          | 101           | 102             |
| Ac              | Th          | Pa                 |                 | Nn               | Dir            | A m            | Cm                      | Bk             | Cf               | Fe            | Em           | Md            | No              |
| AC              |             | Га                 | U               | IAD              | Fu             | AIII           | CIII                    | DK             | CI               | LS            |              | IVIC          | NO              |
| [227]           | 232.04      | 231.04             | 238.03          | [237]            | [244]          | [243]          | [247]                   | [247]          | [251]            | [252]         | [257]        | [258]         | [259]           |



### **How Elements Interact**

**State Objective 2.a.** 



# Physical vs. Chemical Change



- Physical change occurs when the physical properties are changed, such as size or shape.
  - Ex. Folding a piece of paper or a change in the state of matter: solid, liquid, gas
- Chemical change occurs when the chemical properties of the substance cause a change producing a new substance (the atoms have rearranged)



# **Examples of Chemical Reactions**





- Res C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> + O<sub>2</sub>
- Tar
- Foc<sub>CO<sub>2</sub> + H<sub>2</sub>O
  + Energy</sub>



rbon dioxide



# Interaction Between Elements:

If there are 110+ elements, how is it possible to have millions of different substances?

- Compounds are substances that form when two or more elements combine from a chemical change.
  - Ex. NaCl (Sodium Chloride)
  - The <u>properties</u> of compounds are different from the properties of the elements that make up the compound
- A molecule is the smallest particle of a substance with the same properties of that substance. Ex. H<sub>2</sub>O (water)
  - Each molecule behaves like water, if the molecule is divided, Hydrogen and oxygen no longer behave like water



# How do Elements Interact in Chemical Changes?

- Chemical properties of elements are determined by the number of <u>electrons</u> in the outer most energy level called <u>valence</u> electrons
  - Valence electron number is determined by the group number for representative elements

| V   | ale  | ne           | <b>:</b> | Ele | et  | (O)  | ns    |
|-----|------|--------------|----------|-----|-----|------|-------|
| IA  | IIA  | IIIA         | IVA      | VA  | VIA | VIIA | VIIIA |
| Li· | ·Be· | · <b>B</b> · | ٠Ċ٠      | ٠N٠ | :Ò: | :Ė:  | :Ne   |

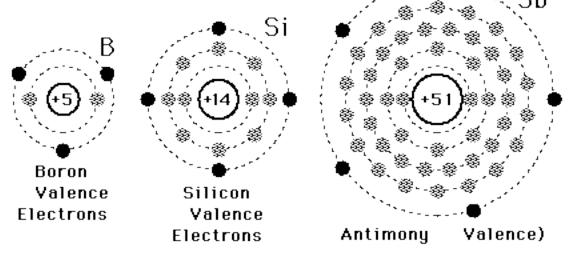


# Element Families have similar chemical properties

- Alkali Metals: Group 1; 1 valence electron
- Alkaline Earth Metals: Group 2; 2 valence electrons
- Halogens: Group 17; 7 valence electrons
- Noble Gases: Group 18; 8 valence electrons

| 1    |      |  |  |  |  |  |       |      |       |      |     |      |
|------|------|--|--|--|--|--|-------|------|-------|------|-----|------|
| н٠   | 2    |  |  |  |  |  | 3     | 4    | 5     | 6    | 7   | 8    |
| Li•  | ·Be· |  |  |  |  |  | • В•  | ·ċ·  | ٠Ņ٠   | ·O·  | ÷F- | :Ne: |
| Na • | ·Mg· |  |  |  |  |  | ٠AI.  | ٠si٠ | · P · | ·s·  | CI  | Ar   |
| K٠   | ·Ca· |  |  |  |  |  | · Ga· | ·Ģe· | ٠As٠  | Se   | Br  | Kr:  |
| Rb•  | ·sr· |  |  |  |  |  |       |      | ٠ġb٠  | ·Ťe  | ::: | Xe   |
| Cs•  | ·Ba· |  |  |  |  |  | ٠Ļi٠  | ·Pb· | ٠₿i٠  | ·Po· | At  | :Rn  |
| Fr.  | ·Ra· |  |  |  |  |  |       |      |       |      |     |      |




#### **Practice**

Use the periodic table to answer the questions.

- 1. How many valence electrons does sodium have?
- 2. How many electrons are found in the electron cloud of an atom of chlorine?

3. What is the group number for each of the atomic models

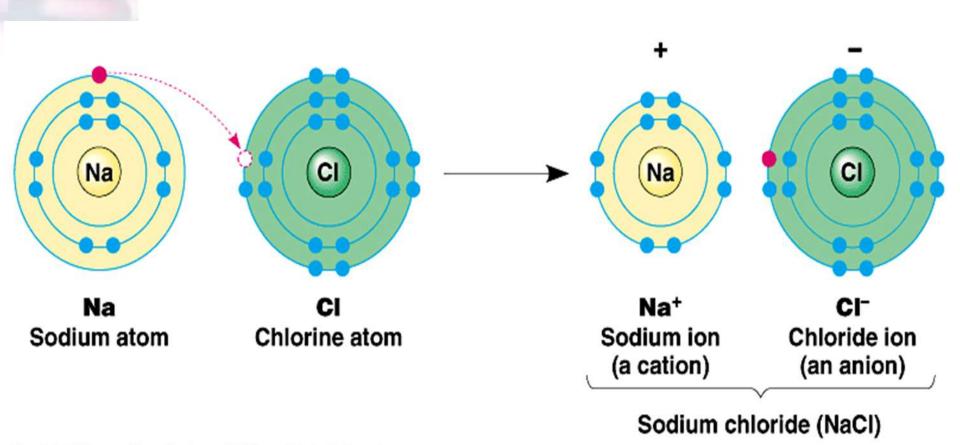
below?





#### **Chemical Bonds**

- Elements bond to other elements to become <u>stable</u> by having a full valence shell.
  - Most elements need <u>8</u> valence electrons to become stable
- Elements will become stable by losing, gaining, or sharing valence electrons
  - Elements that <u>lose</u> electrons become positively charged ions.
  - Elements that gain electrons become negatively charged ions.
- Types of bonding:
  - Ionic
  - Covalent

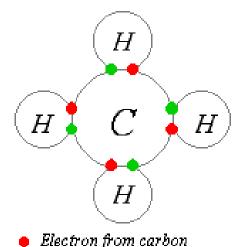



### Ionic Bonding

- <u>lonic</u> bonding is when a strong attraction occurs between <u>oppositely</u> charged ions to hold them close together to become stable (like two magnets)
  - Ion: an atom that no longer has a neutral charge because it has lost or gained an <u>electron</u>
  - Typically between a <u>metal</u> & non-metal
  - ■Ex. Na<sup>+</sup>Cl<sup>-</sup>



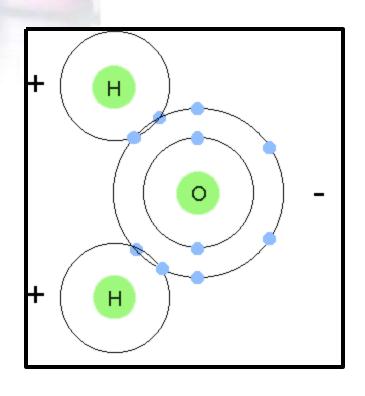
### **lonic Bonding**

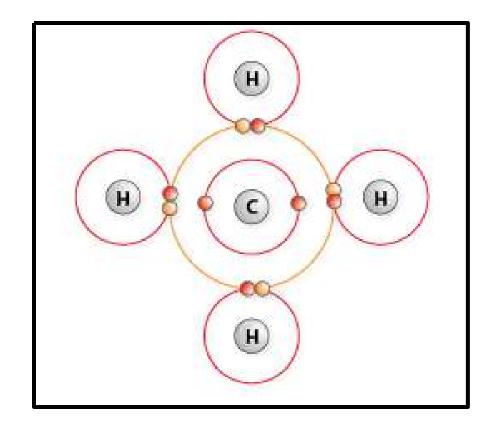



Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.



### **Covalent Bonding**


- Covalent bonds are chemical bonds that form from atoms that <u>share</u> valence electrons to become stable
  - Occurs between two or more nonmetals
  - $\blacksquare$ Ex. H<sub>2</sub> , Cl<sub>2</sub> , H<sub>2</sub>O , C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>

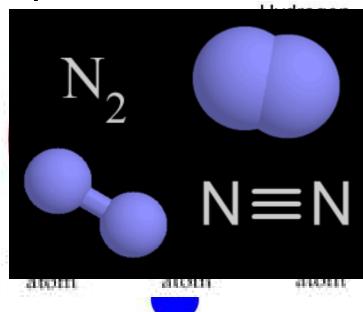



Electron from hydrogen



# **Covalent Bonding**








### **Chemical Formulas**

- Chemical formulas show a combination of chemical symbols & numbers that indicate which elements & how many <u>atoms</u> of each element are present in a compound.
  - ■H<sub>2</sub>O (Water)
  - ■C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> (Sugar/glucose)
  - ■O<sub>2</sub> (Öxygen Molecule)
  - ■CO<sub>2</sub> (Carbon Dioxide)
  - ■N<sub>2</sub> (Nitrogen Molecule)

**Subscript:** # of atoms



Hydrogen



### **Chemical Equations**

- A process that produces a chemical change is called a chemical reaction.
  - Reactants are substances that exist before the reaction begins
  - Products are substances that form as a result of the reaction
- Chemical <u>equations</u> tell chemists the reactants, products, and proportions of each substance present in a reaction (like a recipe)

■ Ex.  $2H_2 + O_2 \longrightarrow 2H_2O$ 

Reactant

Product



#### Law of Conservation of Mass

- The Law of Conservation of Mass states that mass (matter) can neither be <u>created</u> nor <u>destroyed</u>.
  - Therefore, <u>atoms</u> are never lost or created during a chemical reaction.
- Chemical equations must be <u>balanced</u> in order to show the <u>same</u> number of atoms for each element on the reset and & product side of the equation.



# Balancing an Equation

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

$$C=1$$

$$H=4 = H=4$$

$$0=4$$
  $0=4$ 



### **Chemistry of Matter**

Forming Acids & Bases

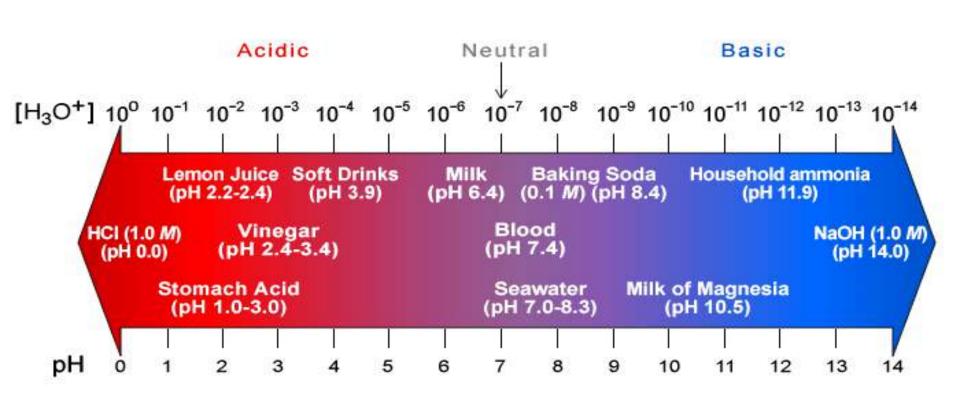
**State Correlation 2b** 



#### **Properties of Acids & Bases**

- An <u>acid</u> is a compound that produces <u>hydrogen</u> ions in water (H<sup>+</sup>)
  - The greater the concentration of H ions produced, the stronger the acid
    - Tastes sour
    - Reacts with non-metals
    - Have a pH < 7</p>
    - Turn blue litmus paper red
- Examples: HCl, H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>




#### **Properties of Acids & Bases**

- ■A <u>base</u> is any compound that produces <u>hydroxide</u> ions (OH<sup>-</sup>) in water.
  - ■The greater the concentration of OH<sup>-</sup> produced, the stronger the base.
    - Taste bitter & feels slippery
    - Reacts with metals
    - Have a pH > 7
    - Turn red litmus paper blue
- Examples: NH<sub>3</sub>, NaOH, NaHCO<sub>3</sub>



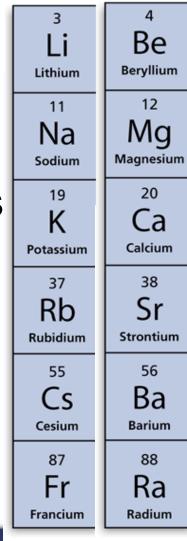
#### pH Scale

#### pH Scale





# Predicting Acids & Bases using the Periodic Table


- Acids form when hydrogen chemically combines with certain nonmetals.
  - All halogens (group 17) form acids when combined with hydrogen
    - Ex. Fluorine & hydrogen (HF)





# Predicting Acids & Bases using the Periodic Table

- Bases form when a hydroxide ion (OH
   joins with a metal
- The metals in group 1 (alkali metals) and group 2 (alkaline earth metals) readily form bases with hydroxide ions
  - EX. KOH
  - ■EX. Ca(OH)<sub>2</sub>

