In an equation, what do coefficients represent?

Back to Stoichiometry...

Calcium Carbonate decomposes to Calcium Oxide and carbon dioxide when heated;

If a 50.g sample of calcium carbonate is heated, how much Calcium oxide will be produced?

$$CaCO_{3(s)} \Rightarrow CaO(s) + CO_2(g)$$

GFM of CaCO₃ is 100.0 g/mol; CaO is 56.0 g/mol $CaCO_{3(s)} \Rightarrow CaO(s) + CO_2(g)$

GFM of CaCO₃ is 100.0 g/mol; CaO is 56.0 g/mol

Ratio of CaCO₃ to CaO =

1 mol (aO)

 $50.0 \text{ g. } \text{CaCO}_3 \text{ x } 1.00 \text{ mol } \text{CaCO}_3/100 \text{ g } \text{CaCO}_3$ $= 0.500 \text{ mol } \text{CaCO}_3$

: you should produce 0.500 mol CaO!

0.500 mol CaO x 56.0g CaO/1.00molCaO = 28.0 g CaO

This is called a Mass-Mass Problem Rules:

- 1. Write a balanced equation
- 2. Find the ratio of known moles to unknown moles
- 3. Compute the number of known moles
- 4. Calculate the number of unknown moles using step 2
- 5. Using the GFM, compute the mass of the unknown

How many grams of Sodium Chloride must be decomposed to yield 355 g of Chlorine gas?

$$\bigcirc$$
NaCl(s) \Rightarrow QNa(s) + Cl_{2(g)}

	(3)
Balance:	2/2:2mol NaQ
Molar ratio:	- 12 , 2 mo 10 99
Moles Known: 3550	(2h) 7/0(1)
Molar ratio: Moles Known: 3550 Ratio: 5 mol Cla	Imal Ola
Grams Unknown:	56.57N-CL
D mol Nac	· I mal Mal