Zumdahl Zumdahl DeCoste

Cherd of RY

Copyright[©] by Houghton Mifflin Company. All rights reserved.

Chapter 15

Solutions

Copyright[©] by Houghton Mifflin Company. All rights reserved.

Overview

- Process of dissolving & why certain substances dissolve in water
- Concentration of solutions
- Factors that affect rate of dissolving
- Mass percent & molarity
- Calculating concentration after dilution
- Problem solving in solution reactions
- Acid-base reaction calculations
- Normality & equivalent weight
- Effect of solute on solution properties

Solution: a homogeneous mixture

• Can be solid, liquid, or gas

- Liquid solution: Coffee good to the last drop (first sip is the same as the last sip!)
- Gaseous solution: air mixture of O₂, N₂, etc.
- Solid solution: brass mixture of Cu & Zn
- Solvent: substance present in largest amount

• *Solute*: other substance(s)

 Sugar dissolved in water (sugar=solute, water=solvent)

Aqueous Solutions

Solution where water is the solvent
Most of the important chemistry that keeps plants, animals, and humans functioning occur in aqueous solutions

Water we drink is aqueous solution

Figure 15.1: Dissolving of solid sodium chloride.

Solubility

 Ionic Substances: strong ionic forces that hold molecule together are overcome by strong attraction between ions & polar water molecule

- Polar Substances: most are soluble (with polarities similar to water)
 - Ethanol (used in alcoholic beverages) soluble because of polar O-H bond (like in water)
 - Sugar has many O-H bonds

Figure 15.2: Polar water molecules interacting with positive and negative ions of a salt.

Figure 15.3: The ethanol molecule contains a polar O—H bond.

Copyright© by Houghton Mifflin Company. All rights reserved.

Figure 15.3: The polar water molecule interacts strongly with the polar O—H bond in ethanol.

Copyright© by Houghton Mifflin Company. All rights reserved.

Figure 15.4: Structure of common table sugar.

Substances insoluble in water

Nonpolar molecules are incompatible with polar water molecules
Will float or sink depending on density

Oil & gasoline float on water

Figure 15.5: A molecule typical of those found in petroleum.

Figure 15.6: An oil layer floating on water.

How Substances Dissolve

• "Hole" must be made in water structure for each solute particle

- Water-water interactions must be replaced by similar water-solute interactions
 - Interactions occur between ions and polar water molecules
 - Hydrogen-bonding interactions occur between the O-H groups and water molecules
- "Like dissolves like" (polar-polar & nonpolarnonpolar)

Solution Composition

• *Saturated*: solution contains as much solute as will dissolve at that temperature

- *Unsaturated*: a solution in which more solute can be dissolved than is dissolved already
- *Supersaturated*: solution that contains more dissolved solid than a saturated solution will hold at that temperature (very unstable)
- *Concentrated solution*: contains a relatively large amount of solute (strong coffee)
- *Dilute solution*: contains a relatively small amount of solute (weak coffee)

Rate of Dissolution - Factors

Surface area

- Large surface area = faster dissolving
- Sugar crystals dissolve faster than sugar cubes
- Stirring
 - Continuously exposes surface of solute to fresh solvent

Temperature

- Dissolve more rapidly at higher temperatures solvent molecules move more rapidly = faster dissolving
- Solids usually more soluble at higher temperatures
- Gases less soluble at higher temperature

Solution Composition: Mass Percent

Sometimes called weight percent
Mass of solute present in a given mass of solution

mass % = (mass solute/mass solution) x 100% OR mass % = [grams solute/(g solute + g solvent)] x 100%

Solution Composition: Molarity

• *Molarity*: number of moles of solute per volume of solution in liters

- Most commonly used expression of concentration
- *M* = moles of solute/liters of solution = mol/L *Standard solution*: solution whose concentration is accurately known
 Used extensively in quantitative analysis
 - Water analysis, blood-alcohol levels

Figure 15.7: Steps involved in the preparation of a standard aqueous solution.

Dilution

- The process of adding more solvent to a solution
- M₁ x V₁ = M₂ x V₂ (yes Jaci, cross-multiply & divide!)
- *Always add acid to water*! never the other way around

Figure 15.8: Process of making 500 mL of a 1.00 *M* acetic acid solution.

Copyright© by Houghton Mifflin Company. All rights reserved.

Stoichiometry of Solution Reactions

- Step 1: Write balanced equation for reaction. If ions involved – write net ionic equation.
- Step 2: Calculate moles of reactants
- Step 3: Determine limiting reactant
- Step 4: Calculate moles of other products or reactants, as required
- Step 5: Convert to grams or other units, if required

Neutralization Reactions

• When just enough strong base is added to react with a strong acid in a solution, the acid has been neutralized

One product is always water

Solution Composition: Normality

- Unit of concentration used when dealing with acids and bases
- Focuses on H⁺ and OH⁻ available
- Equivalent of an acid: amount of that acid that can furnish 1 mol of H⁺ ions
- Equivalent of a base: amount of base that can furnish 1 mol of OH⁻ ions
- Equivalent weight: mass in grams of 1 equivalent of the acid or base

Normality

The number of equivalents of solute per liter of solution

Normality = N = # of equivalents/1 L of solution

• Use in neutralization reactions $N_{\text{acid}} \ge V_{\text{acid}} = N_{\text{base}} \ge V_{\text{base}}$

Boiling Point & Freezing Point of Solutions

- Presence of solute particles causes water to exist as liquid over wider temperature range
 - Freezes at lower temperature
 - Boils at higher temperature
- Colligative property
 - Depends on number of solute particles present

• Use this property to melt ice on roads (add salt) and in car antifreeze (ethylene glycol)

Figure 15.9: A bubble in the interior of liquid water surrounded by solute particles and water molecules.

Figure 15.10: Pure water.

Copyright© by Houghton Mifflin Company. All rights reserved.

Figure 15.10: Solution (contains solute).

