
Chapter 9 Practice Directions

1. . Using your Windows button menu, find and launch your IDLE program.

IDLE is the integrated development environment associated with Python. It is made up

of a code editor where you type your code along with other helpful tools that allow you to

write, save, and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic

debugging tips to programmers if there are problems with their code.

2. Your IDLE window should look something like this once it has launched.:

On Startup, IDLE will display the Python Shell, which can be used to give commands to

the computer’s operating system. Since we are viewing the shell through IDLE and not

the actual command prompt window, the commands that we type into the Shell will not

communicate directly with our operating system. However, you can type similar

commands in the Python Shell directly from the Python program (not through IDLE) and,

if you have permission to access the operating system’s commands, you can

communicate with the computer’s operating system that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do,

like writing code for our game or debugging a file.

3. Go to File > Open and then browse to find your VampirePizzaAttack file that we created

last chapter and open it.

4. Your Python file and code from last chapter will open up.

5. We will now begin to code the next part of our game. I like to make my coding window

larger so that I can see all of my code a bit better, but that is a personal decision.

Remember as we move through these exercises that your spelling, capitalization, and

indentation should match. If it doesn’t, your program likely won’t work.

6. Click at the end of Line 29.

7. Press ENTER twice.

8. Type the code that you see on Lines 31 – 33 of the screenshot below.

Line 31 contains a comment.

Lines 32 and 33 create two constant variables called REG_SPEED and SLOW_SPEED

and set their values to 2 and 1, respectively.

9. Scroll down and click at the end of Line 62, after you define the self.speed variable for

the enemy sprite objects.

10. Replace the number 2 with the code that you see in the screenshot below.

We have simply replaced the value of 2 with the value of whatever the value of the

REG_SPEED variable is. Currently, it is set to 2 as well. However, if we decide to

change it later, this will make it easier to avoid problems.

11. Scroll down and click at the end of Line 130, as shown in the screenshot below.

12. Delete the bottom two print statements.

13. Scroll down and click at the end of Line 140, as shown in the screenshot below.

14. Press ENTER twice.

15. Type the code that you see on Lines 142 - 148. Make sure your indentation matches

what is shown in the screenshot below.

The code on Line 142 begins a “for” loop that will iterate through each vampire pizza

sprite in the all_vampires list.

The code on Line 143 figures out the row that the vampire sprite it is currently working

on is in. It assigns that row’s number to the tile_row variable.

Line 144 creates a variable called vampire_left_side_x. It’s value is set to the current

x-location of the vampire sprite’s left edge (the X coordinate of the vampire sprite’s left

edge).

Line 145 creates a variable called vampire_right_side_x and sets it’s value to be the

current x-location of the vampire sprite’s right edge. You use a math formula to calculate

this.

Line 146 creates an if statement that checks to see if the vampire sprite’s left side x

coordinate location is between 0 and 9 (or greater than the number -1 and less than the

number 10). If it is, it will create a variable called left_tile. If the sprite’s x coordinate is

between 0 and 9, it will also calculate the vampire’s column location and the index of the

column that is touching the vampire sprite’s left side. It will set that index value to be the

value of the left_tile variable. (Line 147)

Line 148 begins your “else” statement, which is what will happen if the current vampire

sprite it is looping through is NOT anywhere on the grid.

16. Press ENTER.

17. Type the code that you see on Lines 149 – 153 of the screenshot below.

The code on Line 149 runs if there is no vampire sprite on the grid, meaning that it can’t

calculate which column the vampire sprite is in. Line 149 creates the left_tile variable

and sets it value to None for that current sprite it is looping through.

Lines 150 – 153 run through the same set of steps to find the index value of the tile

touching the vampire sprite’s right side.

It is necessary to calculate the index values of both the left and right side columns that

are touching the vampire sprite because it is possible (when the sprite is all the way at

the right edge or left edge of the game window) that the sprite will not have any tiles

touching it on one side and it will have a tile touching it on the other. We need to check

both sides of our sprite each time we run this loop to check for collisions between

sprites.

18. Type the code you see on Lines 154 – 159 of the screenshot below:

I know this seems like three more “if” statements added at the end of your code, and

that’s true – that’s all it is! But it is also a bit more than that. These three lines of code

are inherently what make your collision detection in your game work.

Line 154 checks to see if the vampire is touching a tile on its left side (if the index value

stored in the left_tile variable is a number of contains the word None – if the left_tile

variable is True or False) and, if it is True, if the tile to the left of it has been clicked

already (it’s effect). If both of those statements are true, Line 155 will create a

vampire_speed variable and set it to be the value of the SLOW_SPEED constant

variable that you created earlier.

Lines 156 and 157 will check to see if the vampire sprite is touching a tile on its right

side, ensure that the right and the left side x locations are touching different tiles, and

check the value of the effect variable for the tile on the sprite’s right side. If all of those

conditions return “True” (meaning that the vampire sprite has a tile on its right side, it is

different than the tile that is on its left side, and the tile on the right side has been clicked

already), Line 157 will create a vampire_speed variable and set its value to be equal to

the value of the SLOW_SPEED constant variable you created earlier.

Lines 158 and 159 will track the vampire sprite’s x-location and, when it is less than or

equal to 0 (meaning it has moved all the way across the game window), than the enemy

vampire sprite will be deleted by executing the kill() method.

19. Go to File > Save Now to save your code.

Final Code:

