Chapter 9 Practice Directions

. Using your Windows button menu, find and launch your IDLE program.

All Apps Documents Web More *

Best match

IDLE (Python 3.8 64-bit)
App

Search the web

IDLE is the integrated development environment associated with Python. It is made up
of a code editor where you type your code along with other helpful tools that allow you to
write, save, and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic
debugging tips to programmers if there are problems with their code.

2. Your IDLE window should look something like this once it has launched.:

| /& Python 3.8.6 Shell - O X
File Edit Shell Debug Options Window Help
Python 3.8.6 (tags/v3.8.6:db45529, Sep 23 2020, 15:52:53) [M5C v.1927 €4 bit (M

DE4)] on win32
Type "help", "copyright"™, "credits™ or "license ()" for more information.
o

Ln:3 Cok4

On Startup, IDLE will display the Python Shell, which can be used to give commands to
the computer’s operating system. Since we are viewing the shell through IDLE and not
the actual command prompt window, the commands that we type into the Shell will not
communicate directly with our operating system. However, you can type similar
commands in the Python Shell directly from the Python program (not through IDLE) and,
if you have permission to access the operating system’s commands, you can
communicate with the computer’s operating system that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do,
like writing code for our game or debugging a file.

3. Go to File > Open and then browse to find your VampirePizzaAttack file that we created
last chapter and open it.

i Lé‘ Open x
| € B » ThisPC ¢ Documents (H:) » vampire_pizza_directory w & Search vampire_pizza_direct...
Organize = MNew folder =z - T 0
8] MName Date modified Type Size
Quick access -
_ | VampirePizzaAttack 1/19/2021 £33 PM PY File 2KB

B teachericons
4 Downloads =
‘j Documents =
[&=] Pictures
2020-21

Puzzle 4

4. Your Python file and code from last chapter will open up.

5. We will now begin to code the next part of our game. | like to make my coding window
larger so that | can see all of my code a bit better, but that is a personal decision.
Remember as we move through these exercises that your spelling, capitalization, and
indentation should match. If it doesn’t, your program likely won’t work.

6. Click at the end of Line 29.

$#3et up rates
SPAWNRATE = 360
FRAMERATE = &0f

7. Press ENTER twice.

8. Type the code that you see on Lines 31 — 33 of the screenshot below.
#3et up rates
SPAWNRATE = 360
FRAMERATE = &0

#Define speeds

REG_SPEED = 2
SLOW _SPEED = 1

Line 31 contains a comment.

Lines 32 and 33 create two constant variables called REG_SPEED and SLOW_SPEED
and set their values to 2 and 1, respectively.

9. Scroll down and click at the end of Line 62, after you define the self.speed variable for
the enemy sprite objects.

def __imit (self):
super()._ imit ()
gelf.speed = 2

10. Replace the number 2 with the code that you see in the screenshot below.

def imit (self):
super(). ini
self.speed @’
gself.lane = ramw o, 4)

2ll vampires.add(se1f)

We have simply replaced the value of 2 with the value of whatever the value of the
REG_SPEED variable is. Currently, it is set to 2 as well. However, if we decide to
change it later, this will make it easier to avoid problems.

11. Scroll down and click at the end of Line 130, as shown in the screenshot below.

#5et up the background tiles to respond to a mouse click
2lif event.type == pygame.MOUSEBOTTONDOWH :

X, ¥ = pYgame.mouse.get pos ()

tile grid[y//1l00][=x//100].effect = True

print (x, v)

print ('You clicked m%f‘ﬂ

12. Delete the bottom two print statements.

#5et up the background tiles to respond to a mouse click
=lif ewvent.type == pygame.HMOUSEBUOTTCHDOWH :

X, ¥ = pYgames.mouse.get pos ()

tile grid[y//100][=//100].effect = Trus

o
#5et up collision detection
#draw a background grid
for tile row in tile grid:
for tile in tile row:

GAME WINDOW.bklic (BACKGROUND, (tile.rect.x, tile.rect.y), tile.rectﬂ

14. Press ENTER twice.

15. Type the code that you see on Lines 142 - 148. Make sure your indentation matches
what is shown in the screenshot below.

#5et up collision detection
#draw a background grid
tile row tile grid:
tile tile row:

GRME WINDCW.klit (BACEGROUND, (tile.rect.x, tile.rect.y), tile.rect)

vampire all vampires:

tile row = tile grid[vampire.rect.y //100]
vampire left side x = vampire.rect.x // 100

vampire right side x = (vampire.rect.x + vampire.rect.width) J4 100
-1 < wvampire left side x < 10:
left tile = tile row[vampire left side x]

The code on Line 142 begins a “for” loop that will iterate through each vampire pizza
sprite in the all_vampires list.

The code on Line 143 figures out the row that the vampire sprite it is currently working
on is in. It assigns that row’s number to the tile_row variable.

Line 144 creates a variable called vampire_left_side x. It's value is set to the current
x-location of the vampire sprite’s left edge (the X coordinate of the vampire sprite’s left
edge).

Line 145 creates a variable called vampire_right_side_x and sets it’s value to be the
current x-location of the vampire sprite’s right edge. You use a math formula to calculate
this.

Line 146 creates an if statement that checks to see if the vampire sprite’s left side x
coordinate location is between 0 and 9 (or greater than the number -1 and less than the
number 10). If it is, it will create a variable called left_tile. If the sprite’s x coordinate is
between 0 and 9, it will also calculate the vampire’s column location and the index of the
column that is touching the vampire sprite’s left side. It will set that index value to be the
value of the left_tile variable. (Line 147)

Line 148 begins your “else” statement, which is what will happen if the current vampire
sprite it is looping through is NOT anywhere on the grid.

16. Press ENTER.

17. Type the code that you see on Lines 149 — 153 of the screenshot below.
-1 {_vampi;e_left_side_x < 10:

left_tile = tile row[vampire left =side x]
left_tile =
-1 < vampire right =side x < 10:

right tile wall = tile row[vampire right side x]

£ight_tile =
The code on Line 149 runs if there is no vampire sprite on the grid, meaning that it can’t

calculate which column the vampire sprite is in. Line 149 creates the left_tile variable
and sets it value to None for that current sprite it is looping through.

Lines 150 — 153 run through the same set of steps to find the index value of the tile
touching the vampire sprite’s right side.

It is necessary to calculate the index values of both the left and right side columns that
are touching the vampire sprite because it is possible (when the sprite is all the way at
the right edge or left edge of the game window) that the sprite will not have any tiles
touching it on one side and it will have a tile touching it on the other. We need to check
both sides of our sprite each time we run this loop to check for collisions between
sprites.

18. Type the code you see on Lines 154 — 159 of the screenshot below:

left_tile =
-1 < wampire right side x < 10:

right tile wall = tile row[vampire right side =x]

right tile =

bool (left_tile) left_tile.effect:
vampire speed = SLOW_SPEED
bool (right _tile) right tile.x != left tile.x right tile.sffect:

vampire.speed = SLOW_SPEED
vampire.rect.x <= 0:
vampire.kill ()

I know this seems like three more “if” statements added at the end of your code, and
that’s true — that’s all it is! But it is also a bit more than that. These three lines of code
are inherently what make your collision detection in your game work.

Line 154 checks to see if the vampire is touching a tile on its left side (if the index value
stored in the left_tile variable is a number of contains the word None — if the left_tile
variable is True or False) and, if it is True, if the tile to the left of it has been clicked
already (it’s effect). If both of those statements are true, Line 155 will create a
vampire_speed variable and set it to be the value of the SLOW_SPEED constant
variable that you created earlier.

Lines 156 and 157 will check to see if the vampire sprite is touching a tile on its right
side, ensure that the right and the left side x locations are touching different tiles, and
check the value of the effect variable for the tile on the sprite’s right side. If all of those
conditions return “True” (meaning that the vampire sprite has a tile on its right side, it is
different than the tile that is on its left side, and the tile on the right side has been clicked
already), Line 157 will create a vampire_speed variable and set its value to be equal to
the value of the SLOW_SPEED constant variable you created earlier.

Lines 158 and 159 will track the vampire sprite’s x-location and, when it is less than or
equal to 0 (meaning it has moved all the way across the game window), than the enemy

vampire sprite will be deleted by executing the Kill() method.

19. Go to File > Save Now to save your code.

Final Code:

#Import Libraries

import pygame

m pygame import *

from random import randint

#Initialize pygame
pygame.init ()

#zet up clock
clock = time.Clock()

#Define constant wvariables

#Define the parameters of the game window
WINDOW WIDTH = 1100
WINDOW HETGHT = &00
WINDOW RES = (WINDOW WIDTH, WINDOW HEIGHT)

#Define the tile paramsters
WIDTH = 100
HEIGHT = 100

#Define colors
WHITE = (255, 255, 255)

#5et up rates
SPAWHERATE = 360
FRAMERATE = &0

#Define speeds
EEG _SPEED = 2
SLOW _SPEED = 1

#Load assets

FCreate window

GAME WINDOW = display.set mode (WINDOW RES)
display.set_caption('Vampire Fizza')

#5et up the background image
background img = image.load('restaurant.jpg")

background surf = Surface.convert alpha (background img)
BACKGROUND = transform.scale (background surf, (WINDOW RES))

#5et up the enemy image
#Load the image into the program

pizza img = image.load('vampire.png')
#Convert the image to a surface
pizza surf = Surface.convert alpha(pizza img)

VAMPIRE PIZZiA= transform.scale(pizza surf, (WIDTH,

#5et up classes
#Create an enemy class
zlass VampireSprite (sprite.Sprite):

#This function creates an instance of the enemy
def _ init_ (self):
super()._ init ()
self.speed = REG_SPEED
self.lane = randint (0, 4)
all vampires.add(self)
self.image = VAMPIRE PIZZIA.copy()
¥y = 50 + self.lane * 100
self.rect = self.image.get_rect (center = (1100, wy))

#This function moves the enemies from right to left and destroys them after they'wve left the screen

def update (self, game_window) :
game_window.blit (BACKGROUND, (self.rect.x, self.rect.y), self.rect)
self.rect.x —= self.speed
game_window.klit(self.image, (self.rect.x, self.rect.y))

tCreate a class of sprites. Each tile has an invisible interactive field attached to it which i= a sprite in this class.

BackgroundTile (sprite.Sprite):
_ init_ (self):

super()._ init
self.effect =

x
3

#Create class instances

HEIGHT))

#create a sprite group for all VampireSprite instances
all vampires = sprite.Group()

#Initialize and draw the background grid

#Create an empty list to hold the tile grid
tile grid=[]

#Define the color of the grid outline
tile color = WHITE

#Populate the background grid
for row in range (&) :
row of tiles = []
tile grid.append(row of tiles)
for column in range (11):
new_tile = BackgroundTile ()
new _tile.rect = pygame.BRect (WIDTH * column, HEIGHT * row, WIDTH, HEIGHT)
rowWw of tiles.append(new _tile)
draw.rect (BACEGROUND, tile color, (WIDTH*column, HEIGHT*row, WIDTH, HEIGHT), 1)

#Display the background image to the sScreen
GAME WINDOW.blit (BACEGROUND, (0, Q))
#5tart main game loop

#Game loop

game running = Trues

Pl

while game running:

#Check for events

#Checking for and handling events
or event in pygame.event.get():
#Exit loop on quit
if event.type == QUIT:
game running = False

#5et up the background tiles to respond to a mouse click
=1if ewvent.type == pygame.MOUSEBUTTCHNDOWH :
X, ¥ = pPYgame.mouse.get _pos ()

tile grid[vw//100]1[%//100].effect = Tru=

#Create VampireSprite instances

if randint (1, SPAWHEATE) == 1:
VampireSprite()

#3et up collision detection
#draw a background grid
for tile row in tile grid:

for tile in tile row:
GAME WINDOW.blit (BACKGROUND, (tile.rect.x, tile.rect.y),

tile.rect)

or wampire in all vampires:
tile row = tile grid[vampire.rect.y //100]
vampire left side x = vampire.rect.x // 100
vampire right side x = (vampire.rect.x + vampire.rect.width) Ff 100
if -1 < vampire left side x < 10:
left _tile = tile row([vampire left =zide x]

left_tile = Hone
if -1 < wvampire right side x < 10:
right tile wall = tile row[vampire right side x]

right tile = None

if bool(left_tile) and left _tile.effect:
vampire speed = SLOW_SPEED

if bool(right tile)} and right tile.x != left tile.x and right tile.effect:
vampire.spesed = SLOW_SPEED

if vampire.rect.x <= 0:

vampire.kill ()

$Update display.

for wampire in all vampires:
vampire.update (GAME WINDOW)

display.update ()

$zet the framerate
clock.tick (FRAMERATE)

#Close main game loop

$Clean up game
pvgame . quit ()]

