Chapter 9 Volcanoes ## Section 1 ## **Objectives** - **Distinguish** between nonexplosive and explosive volcanic eruptions. - **Identify** the features of a volcano. - Explain how the composition of magma affects the type of volcanic eruption that will occur. - **Describe** four types of lava and four types of pyroclastic material. | Volcar | nic Eruptions | | | | |--------|--|-------------------------|---------------------------|--| | • | A volcano is a | or fissure in the Earth | 's surface through which | h molten rock and gases are expelled. | | • | Molten rock is called m | agma. | | | | • | Magma that flows onto | the | is calle | d lava. | | Nonex | plosive Eruptions | | | | | • | Nonexplosive eruptions | are the most | type of vo | olcanic eruptions. These eruptions | | | produce relatively | flows of lava | in huge amounts. | | | • | Vast areas of the Earth'
United States, are covered | | | and the Northwestern | | Explos | sive Eruptions | | | | | • | | ns are much | than non-explosive | eruptions, the effects can be | | • | | iption, clouds of hot _ | , ash, and | gas rapidly shoot out from a volcano. | | • | An explosive eruption of demolish and entire mou | | of tons of lava and | from a volcano, and can | | What | Is Inside a Volcano? | | | | | • | The interior of a volcano | | | | | • | The magma chamber i | s the body of molten re | ock deep | that feeds a volcano. | | • | The vent is an | at the surfa | ace of the Earth through | which volcanic material passes. | | What ! | Makes Up Magma? | | | | | • | | om different eruptions | , scientists have learned | I that the of | | | the magma affects how | | a volcanic eruption i | s. | | • | The key to whether an e | eruption will be explos | ive lies in the | , water, and gas content of the | | | magma. | | | • | | • | Water and Magma Are explosive eruption is mo | - | | ntent of magma is, an | | • | | | | stays dissolved. If the magma quickly | | | moves to the surface, progases. | essure suddenly | and the wat | er and other compounds become | | • | As gases | | | | | • | Silica-Rich Magma Tra
explosive eruptions. | aps Explosive Gases | Magma with a high sili | ca content also tends to cause | | • | Silica-rich magma has a | a stiff | so it flows slov | vly and tends to harden in a volcano's | | vents. As a result, it the vent. | |--| | As more magma pushes up from below, pressure If enough pressure builds up, an explosive eruption takes place. | | What Erupts from a Volcano? | | Magma erupts as either lava ormaterial. | | • Lava is liquid magma that flows from a volcanic vent. | | • Pyroclastic material forms when magma is into the air and hardens. | | • Types of Lava The of lava, or how it flows, varies greatly. Lava that has high | | viscosity is stiff. Lava that has low viscosity is more | | The viscosity of lava affects the surface of a lava flow in different ways. | | Types of lava | | • Aa | | Pours out quickly and forms a brittle crust. The crust is torn into jagged pieces as molten lava
continues to flow underneath. | | • Pahoehoe | | o Flows very slowly, like wax dripping from a candle. It's glassy surface has rounded wrinkles. | | Pillow lava Forms when lava erupts underwater. As the lava cools it forms rounded lumps that look like pillows. | | Blocky lava | | Usually oozes from a volcano and cools forming jumbled heaps of sharp-edged chunks | | What Erupts from a Volcano? | | Types of Pyroclastic Material When magma explodes from a volcano and solidifies in the air, pyroclastic material is formed. | | Pyroclastic material also forms when powerful eruptions existing rock. | | There are four types of pyroclastic material: | | Volcanic bombs are large of magma that harden in the air. | | Volcanic blocks are pieces of solid rock erupted from a volcano. Volcanic blocks are the | | pieces of pyroclastic material. | | • Lapilli are small, pebblelike bits of magma that hardened before they hit the ground. | | • Volcanic ash forms when the gases in stiff magma expand rapidly and the walls of the gas bubbles | | explode into tiny, glasslike Ash makes up most of the pyroclastic material in an eruption. | | Pyroclastic flows are volcanic flows that are produced when enormous amounts of
hot ash, dust, and gases are ejected from a volcano. | | Pyroclastic flows can race downhill at speeds of more than km/h. | | • The temperature at the center of a pyroclastic flow can exceed°C. | ## Section 2 Objectives • Explain how volcanic eruptions can affect climate. - **Compare** the three types of volcanoes. **Compare** craters, calderas, and lava plateaus. ### **Volcanic Eruptions and Climate Change** | • | During a large-scale volcanic eruption, enormous amounts of volcanic ash and gases are ejected into the | | | | | |---------|---|--|--|--|--| | • | As volcanic ash and gases spread throughout the atmosphere, they can block enough sunlight to cause | | | | | | Differe | ent Types of Volcanoes | | | | | | • | Volcanic eruptions can cause profound changes in climate, but the changes to the Earth's surface are more familiar. Perhaps the best known of all volcanic landforms are the themselves. | | | | | | There a | are three basic types of volcanoes: | | | | | | • | Volcanoes | | | | | | • | Cinder Cone Volcanoes | | | | | | • | Volcanoes | | | | | | • | Shield volcanoes are built of layers of lava that are released from repeated | | | | | | | eruptions. The lava spreads out over a wide area, creating a volcano with sloping sides. | | | | | | • | Cinder cone volcanoes are made of material usually produced from | | | | | | | eruptions. The pyroclastic material forms slopes. | | | | | | • | Composite volcanoes are formed from eruptions of pyroclastic material, followed by | | | | | | | quieter flows of lava. These formations, among the types of volcanoes, have broad | | | | | | | bases and sides that get toward the top. | | | | | | Other ' | Types of Volcanic Landforms | | | | | | • | In addition to volcanoes, there are other landforms produced by volcanic activity. | | | | | | • | Craters are funnel-shaped pits near the top of the of a volcano. | | | | | | • | Calderas are large, depressions that form when the magma chamber below a volcano partially empties and causes the ground above to sink. | | | | | | • | Calderas can appear similar to craters, but are many times | | | | | | • | Lava Plateaus are wide, flat landforms that result from repeated eruptions of lava that spread out over a large area. | | | | | | The lava that formed lava plateaus usually erupted from long cracks, or, in the crust over a period of millions of years. | |--| | Section 3 Objectives Describe the formation and movement of magma. Explain the relationship between volcanoes and plate tectonics. Summarize the methods scientists use to predict volcanic eruptions. | | The Formation of Magma • Understanding how forms helps explain why volcanoes erupt. Magma forms in the regions of the Earth's crust and in the uppermost layers of the mantle. | | Where Volcanoes Form The of volcanoes give clues about how volcanoes form. | | When Tectonic Plates Separate At a divergent boundary, tectonic plates move from each other, forming a set of deep called a rift zone between the plates. Mantle rock rises to fill the gap opened by the separating tectonic plates. When mantle rock nears the surface, decreases, which causes the mantle rock to and form magma. Mid-Ocean Ridges Form at Divergent Boundaries Lava that flows from undersea rift zones produces volcanoes and mountain chains called | | At these mid-ocean ridges, lava flows out and creates new Most volcanic activity on Earth occurs at mid-ocean ridges. | | When Tectonic Plates Collide Convergent boundaries are places where tectonic plates When an oceanic plate collides with a continental plate, the oceanic plate usually slides the continental plate. This is a process called subduction. Subduction Produces Magma As descending oceanic crust scrapes past the continental crust, the temperature and pressure | | Hot Spots Not all magma develops along tectonic plates boundaries. Some volcanoes are located at places known as | | Hot spots are volcanically active places on the Earth's surface that are far from plate boundaries. Some scientists think that hot spots are directly above columns of rising magma, called | • Other scientists think that hot spots are the result of ______ in the Earth's crust. same spot while the tectonic plates move over it. A hot spot often produces a _____ of volcanoes. One theory is that the mantle plume stays in the • The theory argues that hot-spot volcanoes occur in chains because they form along the cracks in the Earth's crust. | Predicting \ | Volcanic Erı | uptions | | |--------------|---------------|----------|-------------| | Volcanoes a | re classified | in three | categories: | | • | Volcanoes | | | | | | |---|---|--|--|--|--|--| | • | Dormant Volcanoes | | | | | | | • | Volcanoes | | | | | | | • | Measuring Small Quakes and Volcanic Gases Most active volcanoes produce small earthquakes as the | | | | | | | | magma within them moves upward and causes the surrounding rock to | | | | | | | • | Just before an eruption, the number and of the earthquakes increase. Monitoring these quakes is one way to predict an eruption. | | | | | | | • | Studying the of certain gases in a volcano also may help predict eruptions. | | | | | | | • | Measuring Slope and Temperature As magma moves upward prior to an eruption, it can cause the | | | | | | | | Earth's surface to, and the side of a volcano may even | | | | | | | • | Scientists can use instruments and satellite technology to detect changes in a volcano's | | | | | | | • | Infrared satellite images record changes in surface and gas emissions of a volcano to watch if the magma below is rising. | | | | | |