7. See left.

10.

11.

15.

Answers

CHAPTER **8**

Chapter Test C

For use after Chapter 8

Simplify the expression. Write your answer using exponents.

1.
$$\frac{7^3 \cdot 7^8}{7^2}$$

2.
$$\left(\frac{1}{8}\right)^3 \cdot 8^5$$

3.
$$\left(\frac{2w^3}{v}\right)^3 \cdot \frac{1}{6w^3}$$

4.
$$(-6a^7b^4)(3a^3b^5)$$

5.
$$[(k+2)^2]^8$$

6.
$$5^8 \cdot 5 \cdot 5^{11}$$

In Exercises 7-9, use the following information.

Draw an equilateral triangle with side lengths that are 1 unit long. Divide it into 3 new triangles by connecting the midpoints of the sides of the triangle, as shown in Step 1.

Step 0

Step 1

7. Complete the table that shows the number of new shaded triangles and the side lengths of the new triangles for Steps 1–4.

Step 2

Step	Number of new triangles	Side length of new triangle
1		
2		
3		
4		

- **8.** Write and simplify an expression to find by how many times the number of new triangles increased from Step 2 to Step 7.
- **9.** Write and simplify an expression to find the perimeter of a triangle formed in Step 6.

Simplify the expression.

10.
$$0^{-4}$$

11.
$$\frac{3^{-4}}{3^{-7}}$$

12.
$$4^{-2} \left(\frac{6}{11^0} \right)$$

13.
$$-3(3f^{-1}g^3)^{-2}$$

14.
$$\left(\frac{-2c^4d^{-4}}{3c^{-1}d^{-2}}\right)^4$$

15.
$$\left(\frac{q^2}{5}\right)^{-2}$$

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

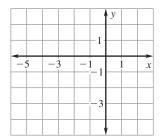
CHAPTER 8

Chapter Test C continued For use after Chapter 8

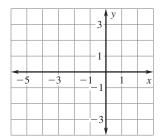
Order the numbers from least to greatest.

- **16.** $76,000,000; 7.3 \times 10^{8}; 4.668 \times 10^{7}; 66,005,000; 7.08 \times 10^{6}$
- **17.** 0.0000284; 0.00020079; 3.4×10^{-5} ; 4.07×10^{-6} ; 0.00004

Evaluate the expression. Write your answer in scientific notation.

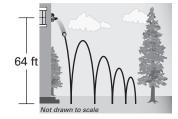

18.
$$\frac{(2,000,000,000)^3(0.00009)}{600,000,000}$$

19.
$$\frac{1.2 \times 10^{-9}}{4 \times 10^{-7}}$$


20. The radius of Earth is about 6.38×10^3 kilometers and the radius of a grain of sand is about 1×10^{-3} meter. Assume Earth and a grain of sand are spheres. Find the ratio of the volume of Earth to the volume of a grain of sand. Round your answer to the nearest hundredth. What does the ratio tell you?

Graph the function. Compare the graph with the graph of $y = 2^x$. Then identify its domain and range.

21.
$$y = -4 \cdot 2^x$$



22.
$$y = \frac{1}{3} \cdot 2^x$$

In Exercises 23–25, use the following information.

A ball is dropped from a height of 64 feet. It rebounds three-fourths of the height from which it falls every time it hits the ground.

- 23. Identify the initial height, the decay factor, and the decay rate.
- **24.** Write a function that models the height of the ball over time.
- **25.** Find the height of the ball after it hits the ground three times.

Answers

16. _____

17. _____

- 18. _____
- 19. _____
- 20. _____
- 21. See left.

22.

See left.

- ____
- 23.
- 24.
- 25. _____