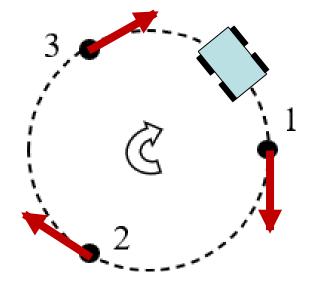

Lecture Outline

Chapter 8: Rotational Motion

- Centripetal Force
- Centrifugal Force
- Rotating Reference Frames
- Simulated Gravity

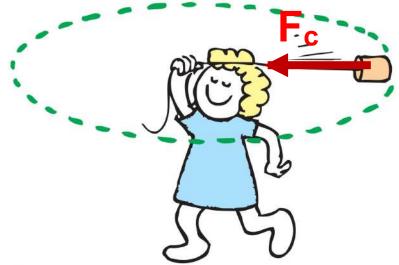


This lecture will help you understand:

- How you can accelerate at constant speed.
- How to safely swing a bucket of water over your head.
- How to safely drive around a curve.
- Why you go off on tangents.
- Why centrifugal forces are not real.
- How artificial gravity works.
- What it would be like on a rotating space station.

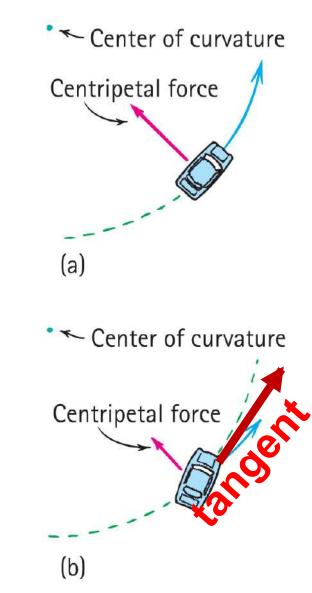
A car travels at constant speed in a circle.

Top view:



 Draw the velocity vectors at points 1, 2 and 3.
 Is this car accelerating? Yes How can you tell? velocity is changing
 Is there a net force acting on the car? Yes How can you tell? because it is accelerating

© 2015 Pearson Education, Inc


Centripetal Force

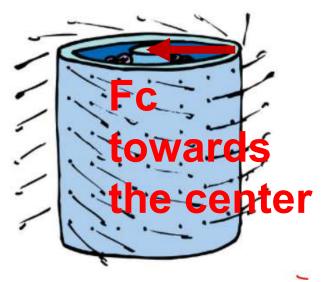
- Any force directed toward a fixed center is called a centripetal force Fc.
- Centripetal means "center-seeking" or "toward the center."
 - Example: To whirl a tin can at the end of a string, you pull the string toward the center and exert a centripetal force to keep the can moving in a circle.

Centripetal Force—Example

- When a car rounds a curve, the centripetal force prevents it from skidding off the road.
- If the road is wet, or if the car is going too fast, the centripetal force is insufficient to prevent skidding off the road.
- The car will go off the road in the direction of its velocity
- This is "off on a tangent.

What is the centripetal force.

- The centripetal force F_c is what keeps an object moving in a circle. Below are 5 objects moving in a circle.
- Match the object with the thing that provides the centripetal force.
 - EbirdA.frictionAcar on horizontal roadB.waterDplanet revolving around SunC.stringCmass on a string twirled in a circleD.gravityBa sailboat circling a buoyE.air


Ex. Spin cycle in a washer

During the spin cycle:

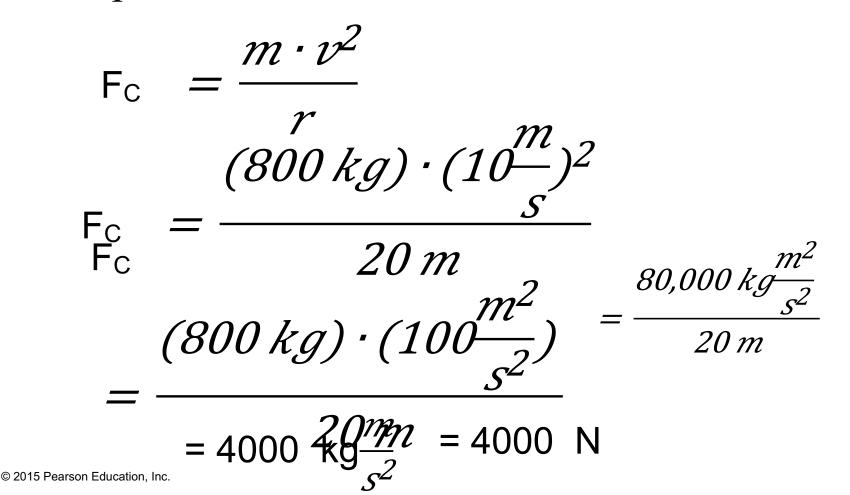
... is water forced away from the

clothes?

...or are the clothes forced away from the water?

What is exerting the centripetal force on the clothes to force them into a circular path?

Why isn't the water forced Inside wall of washer to go in a circle? it escapes through the holes


Centripetal Force, Continued

- Depends upon
 - mass of object m.
 - tangential speed of the object v.
 - radius of the circle r.
- In equation form:

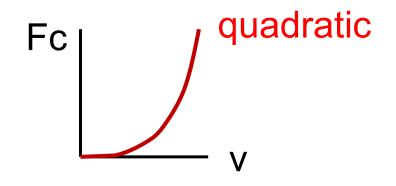
Centripetal force = mass x tangential speed² radius

$$=_{\rm c} = \frac{m \cdot v^2}{r}$$

Ex. A 800-kg car moves in a circle with radius 20 m at a tangential speed of 10 m/s. Calculate the centripetal force.

Ex. The same 800-kg car moves in the same circle with radius 20 m at twice the speed = 20 m/s. Calculate the centripetal force.

 $m \cdot v^2$ F_C $r (800 kg) \cdot (20 \frac{m}{s})^2$ F_C F_C 20 m 320,000 kg $(800 \ kg) \cdot (400 \frac{m^2}{2})$ 20 m= 16,00020 m


 \rightarrow If you repeated the calculation for v = 30 m/s you would get an Fc = 36,000 N

 \rightarrow In summary:

Example	V	Fc	increase
1	10 m/s	4000 N	
2	20 m/s	16,000 N	4x
3	30 m/s	36,000	9x

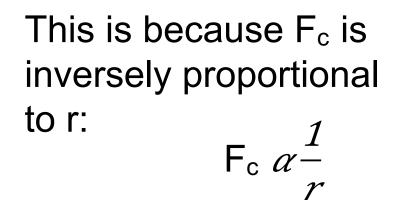
This is because F_c is proportional to v^2

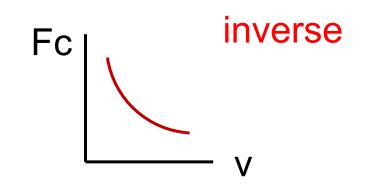
$$F_c \alpha v^2$$

Ex. Back to the original problem:

A 800-kg car moves in a circle with radius = 20 m at a tangential speed of 10 m/s. We found:

$$F_{\rm C} = \frac{m \cdot v^2}{r} = 4000 \text{ N}$$


If the radius is 40 m, then $F_c = 2000 \text{ N}$


If the radius is 60 m, then $F_c = 1333$ N

© 2015 Pearson Education, Inc.

\rightarrow In summary:

Example	r	Fc	increase
1	20 m	4000 N	
2	40 m	2000 N	(1/2)x
3	60 m	1333	(1/3)x

Centripetal Force CHECK YOUR NEIGHBOR

Suppose you double the speed at which you round a bend in the curve, by what factor must the centripetal force change to prevent you from skidding?

- A. Double
- B. Four times
- C. Half
- D. One-quarter

Centripetal Force CHECK YOUR ANSWER

Suppose you double the speed at which you round a bend in the curve, by what factor must the centripetal force change to prevent you from skidding?

B. Four times Explanation:

Centripetal force = mass x tangential speed² radius

Because the term for "tangential speed" is <u>squared</u>, if you *double* the tangential speed, the centripetal force will be *double* <u>squared</u>, which is **four times**.

Centripetal Force CHECK YOUR NEIGHBOR, Continued

Suppose you take a sharper turn than before and *halve* the radius, by what factor will the centripetal force need to change to prevent skidding?

- A. Double
- B. Four times
- C. Half
- D. One-quarter

Centripetal Force CHECK YOUR ANSWER, Continued

Suppose you take a sharper turn than before and *halve* the radius, by what factor will the centripetal force need to change to prevent skidding?

A. Double

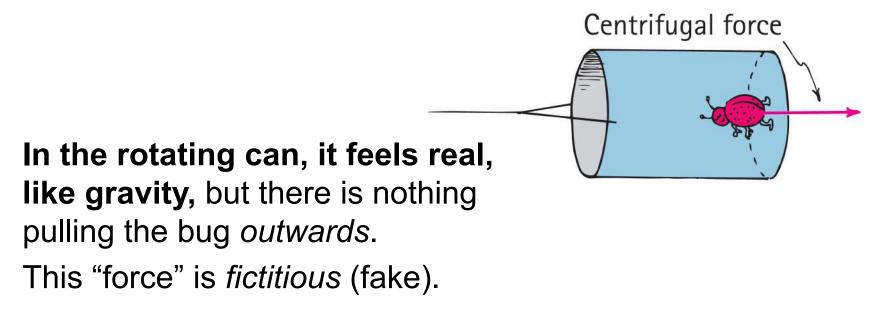
Explanation:

Centripetal force = mass x tangential speed² radius

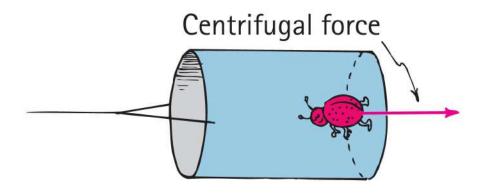
Because the term for "radius" is in the denominator, if you *halve* the radius, the centripetal force will double.

Centrifugal Force

- Although centripetal force is center directed, an occupant inside a rotating system seems to experience an outward force. This apparent outward force is called centrifugal force.
- Centrifugal means "center-fleeing" or "away from the center."


Centrifugal Force – A Common Misconception

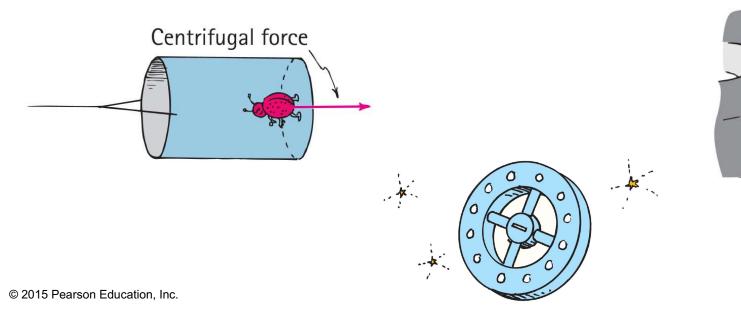
- It is a common misconception that a centrifugal force pulls outward on an object.
- Example:
 - If the string breaks, the object doesn't move radially outward.
 - It continues along its tangent straight-line path—because *no* force acts on it. (Newton's first law)



Rotating Reference Frames

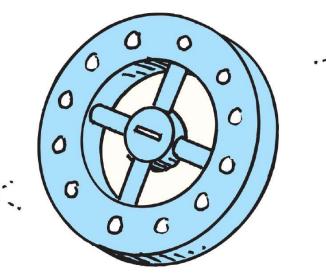
- Centrifugal force *in a rotating reference frame* is a force that is felt because you want to off on a tangent. It is due to your inertia, so it is called an *inertial* force.
- Example:
 - The bug at the bottom of the can experiences a pull toward the bottom of the can.

Rotating Reference Frames



If the force were real, there would have to be a reaction force of the bug pulling inward on something. There isn't.

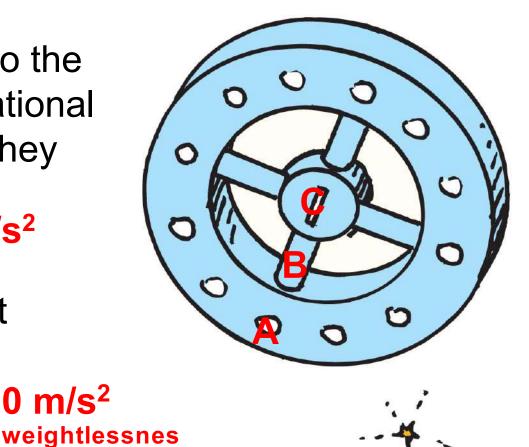
The only real force is the centripetal force Fc. Fc is what pulls the bug *inward towards the circle center.* What is exerting the Fc on the *bug*? bottom of can What is exerting the Fc on the *can*? string


Simulated Gravity

- Centrifugal force can be used to simulate gravity in space stations of the future.
- By spinning the space station, occupants would experience a centrifugal force (simulated gravity) similar to the bug in the can.

Simulated Gravity, Continued

- To simulate an acceleration due to gravity, g, which is 10 m/s², a space station must:
 - have a radius of about 1 km²/_i
 (i.e. diameter of 2 km).
 - rotate at a speed of about 1 revolution per minute.


Simulated Gravity, Continued

- If an astronaut experiences normal gravity
 = 10 m/s² at A on the outside, however....
- At point B (halfway to the center), what gravitational acceleration would they experience?

5 m/s²

S

 At the center C, what acceleration would they experience? 0 m/s²

Homework:

- On page 154; #22-27
- And show all work (equation used, substitution with units and answer with units) on:
- On page 155, # 40-41