Lecture Outline

Chapter 8: Rotational Motion

PAUL G. HE

Section 1. This lecture will help you understand:

- circular motion...rotation vs revolution
- linear vs tangential speed
- how trains stay on tracks
- why hurricanes form
- why rockets are launched from Florida

UCM = uniform circular motion

- When an object moves **at constant speed** around a center point, it is called *uniform circular motion*.
- The center point is called the *axis*.

Rotation versus Revolution

- When an object turns about an internal axis, it is undergoing *rotation*.
- When an object turns about an external axis, it is undergoing *revolution*.
- How long does it take the Earth to rotate once? 24 h
- How long does it take the Earth to revolve once?

rotation or revolution?

revolution

rotation

Circular Motion

- Circular Motion is characterized by two kinds of speeds:
 - tangential (or linear) speed v.
 → how much distance covered per time
 - 2. **rotational** (or circular) speed ω (omega). \rightarrow angle or rotations per time (rpm)

1. Tangential Speed

 The distance traveled by a point on the rotating object divided by the time taken to travel that distance is called its *tangential* speed (symbol v).

<u>circumference</u>

time

 $2\pi x radius$ time

Ex: Calculate tangential speed :

A car moves in a circle of radius of 30 m in 15 s.1) What is its tangential speed?

$$v = \frac{circumference}{time} = \frac{2\pi radius}{time} (3.14)30 \text{ m}$$
 13 m/s

2) What is the tangential speed if the same car drives in a circle of radius 60 m in the same time.

 $v = \frac{circumference}{time} = \frac{2 \pi radius}{time} = \frac{2 \pi radius}{15 \text{ s}} = 15 \text{ s}$ 26 m/s

3) How much faster is the second car? $_{2x}$

In UCM, the velocity is tangent to the circle:

- Tangential velocity = tangential speed + direction The tangential velocity v is always tangent to the circle. What direction is v at A? Α down At B? right
 - At C? up

- 1) Is the velocity changing? yes
- 2) If a car travels at constant speed in a circle, is it accelerating? yes

2) Rotational Speed ω

- Rotational (angular) speed is the number of rotations or revolutions per unit of time (symbol ω).
- Units can be **rpm** (revolutions per minute)

- All parts of a rigid merry-go-round turn about the axis of rotation in the same amount of time.
- So, all parts have the same rotational speed $\boldsymbol{\omega}$

Relationship between v and ∞:
Tangential speed v depends on:
a) distance from the axis r; and

b) and the angular speed $\boldsymbol{\omega}.$

 $v = r \omega$

If r is doubled, then v.... ...doubles.

If r is tripled, then v.... ...triples.

v is directly proportional to r v α r

V

Tangential Speed

• Points closer to the circumference have a higher tangential speed that points closer to the center.

- Why? they travel further in the same time
- Which point has a higher angular speed ω ? neither

Rotational and Tangential Speed CHECK YOUR NEIGHBOR

A ladybug sits *halfway* between the rotational axis and the outer edge of the turntable. When the turntable has a rotational speed of 20 RPM and the bug has a tangential speed of 2 cm/s, what will be the rotational and tangential speeds of her friend who sits at the outer edge?

tangential		rotational
A.	2 cm/s	20 rpm
B.	2 cm/s	40 rpm
C.	4 cm/s	20 rpm
D.	4 cm/s	40 rpm

Rotational and Tangential Speed CHECK YOUR ANSWER

A ladybug sits halfway between the rotational axis and the outer edge of the turntable. When the turntable has a rotational speed of 20 RPM and the bug has a tangential speed of 2 cm/s, what will be the rotational and tangential speeds of her friend who sits at the outer edge?

C. 4 cm/s

Explanation:

Tangential speed = $r\omega$

Rotational speed of both bugs is the same, so if radial distance doubles, tangential speed also doubles.

So, tangential speed is 2 cm/s x 2 = 4 cm/s.

Ex. Different places on Earth:

- Where on Earth is the tangential velocity the greatest? equator
- Where is it the least? poles
- Which location has the greatest angular velocity? same

Why are rockets launched from Florida? fastest tangential velocity

The Coriolis Effect:

 winds and ocean currents curve to the <u>right</u> (north hemisphere) and to the <u>left</u> (south hemisphere)

rents north e here)

Pacific Drif

Subtropical Gyres and Associated Ocean Currents

Canary

-occurs because different locations have different tangential speeds:

https://www.youtube.com/watch?v=wFRbXnU7mkw

Ex. Why does a rolling cup curve?

Ex. Wheels on Railroad trains

On curves, the outside track is longer. So the wheel rides up onto its outer diameter, which is moving faster.

 Train wheels self correct. This is called "hunting oscillations."

Homework: due by 7 pm tonight

- On page 153, do # 1-4
- On page 154, do #32
- On page 155: do #44
- On page 156, do #51 and 52