
Chapter 8 Practice Directions

1. . Using your Windows button menu, find and launch your IDLE program.

IDLE is the integrated development environment associated with Python. It is made up

of a code editor where you type your code along with other helpful tools that allow you to

write, save, and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic

debugging tips to programmers if there are problems with their code.

2. Your IDLE window should look something like this once it has launched.:

On Startup, IDLE will display the Python Shell, which can be used to give commands to

the computer’s operating system. Since we are viewing the shell through IDLE and not

the actual command prompt window, the commands that we type into the Shell will not

communicate directly with our operating system. However, you can type similar

commands in the Python Shell directly from the Python program (not through IDLE) and,

if you have permission to access the operating system’s commands, you can

communicate with the computer’s operating system that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do,

like writing code for our game or debugging a file.

3. Go to File > Open and then browse to find your VampirePizzaAttack file that we created

last chapter and open it.

4. Your Python file and code from last chapter will open up.

5. We will now begin to code the next part of our game. I like to make my coding window

larger so that I can see all of my code a bit better, but that is a personal decision.

Remember as we move through these exercises that your spelling, capitalization, and

indentation should match. If it doesn’t, your program likely won’t work.

6. Click at the end of Line 73.

7. Press ENTER twice.

8. Type the code that you see on Lines 75 - 79 of the screenshot below, then press

ENTER:

75

76

77

78
79

The code on Lines 75 contains a comment.

Line 76 creates another subclass called BackgroundTile. The subclass will create sprite

objects based off of the Sprite superclass that comes preprogrammed in Pygame.

Line 77 contains the code that tells the program you are going to define how the new

sprites generated under the BackgroundTile subclass will be set up.

Line 7 states that you want this subclass to keep all of the default behaviors and settings

from the Sprite superclass.

Line 80 creates an instance attribute for each new sprite created under this class called

effect. The value of the effect instance attribute is set to False. The effect attribute will

change to true if a tile has a trap applies to it to trap vampire pizzas.

9. Click at the end of Line 90, as shown in the screenshot below.

10. Press ENTER twice.

11. Type the code that you see on Lines 92 – 93 of the screenshot below.

89

90

91

92

93

Line 92 contains a comment.

Line 93 creates a list variable called tile_grid and sets its value to be an empty list. Lists

are denoted by using square brackets [] at the beginning and end of the list. Items within

a list are separated by commas. List variables allow you to make lists of many different

items. Each item in that list can be referenced using the list variable time and the item’s

index number (position within the list).

12. Click at the end of Line 96, as shown in the screenshot below.

13. Press ENTER.

14. Type the code that you see on Lines 97 – 98 of the screenshot below.

95

96

97

98

99

Line 97 creates another list variable called row_of_tiles and sets its value to be an empty

list.

Line 98 will append the value of the row_of_tiles list variable into the tile_grid list variable

that we created earlier on Line 93. In other words, the tile_grid list variable will be made

up of a bunch of smaller lists that list the tiles in each row.

15. Click at the end of Line 99, as shown in the screenshot below:

16. Press ENTER.

17. Type the code that you see on Lines 100 – 102 of the screenshot below.
99

100
101

102

103

Line 100 creates a new variable called new_tile and assigns that variable to a new sprite

object instance created using the BackgroundTile class.

Line 101 creates a new_tile.rect attribute for the new object that was created and sets its

value to be an invisible rectangle using the width and height variables and the column

and row numbers.

Line 102 appends the new_tile created to the row_of_tiles list that you created on Line

97.

18. Click at the end of Line 122, as shown in the screenshot below.

19. Press ENTER twice.

20. Type the code that you see on Lines 104 – 109 of the screenshot below:

102

103

104

105

106

107
108
109

Line 104 contains a comment.

Line 105 creates an elif statement that checks if an event has happened. Elif stands for

“else if.” If the specific event it is checking for happens, the code in the block will

execute. If the event doesn’t occur, the code will be skipped. In this case, the “elif”

statement is testing for whether the user has clicked the mouse button (the

MOUSEBUTTONDOWN event).

The code in Lines 106 – 109 will execute if the user presses the mouse button.

Line 106 will create variables called x and y and assign their values to the x and y

coordinate positions of wherever the user has clicked.

Line 107 will find the background tile that is at the location where the mouse button was

clicked. It will change the effect attribute of that particular tile to True, meaning that the

user has now placed a trap at that particular location. The “//” symbols tell the program to

divide.

Lines 108 and 109 contain print statements that will print the values of the x and y

variable and also a statement saying “You clicked me!”.

21. Click at the end of Line 114, as shown in the screenshot below.

22. Press ENTER twice.

23. Type the code that you see on Lines 116 – 121 of the screenshot below.

116

117
118
119
120
121

Line 116 contains a comment separator.

Lines 117 and 118 contain more comments.

Line 119 starts a “for” loop what will loop for each item/list in the tile_grid list variable.

Remember, the tile_grid list variable is made up of smaller lists from the row_of_tiles list

variable.

Line 120 will loop for each tile in each of the the tile_row lists.

Line 121 will blit the background grid to the specified location. It will blit the

BACKGROUND image to the location of the tile.rect.x and tile.rect.y variables. The

blitted image will take up the area specified by the tile.rect specifications.

24. Press ENTER.

25. Go to File > Save to save your project.

26. Go to Run > Run Module. You shouldn’t see much happening since we haven’t

programmed the print statements to display on the screen or the traps to load. However,

in the Python Shell, you should see the print statements pop up with the x and y

coordinates of whatever tile you clicked, along with the “You clicked me!” print

statement.

27. You may now close out of the game window and IDLE.

Final Code:

