
Chapter 7 Practice Directions

1. . Using your Windows button menu, find and launch your IDLE program.

IDLE is the integrated development environment associated with Python. It is made up

of a code editor where you type your code along with other helpful tools that allow you to

write, save, and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic

debugging tips to programmers if there are problems with their code.

2. Your IDLE window should look something like this once it has launched.:

On Startup, IDLE will display the Python Shell, which can be used to give commands to

the computer’s operating system. Since we are viewing the shell through IDLE and not

the actual command prompt window, the commands that we type into the Shell will not

communicate directly with our operating system. However, you can type similar

commands in the Python Shell directly from the Python program (not through IDLE) and,

if you have permission to access the operating system’s commands, you can

communicate with the computer’s operating system that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do,

like writing code for our game or debugging a file.

3. Go to File > Open and then browse to find your VampirePizzaAttack file that we created

last chapter and open it.

4. Your Python file and code from last chapter will open up.

5. We will now begin to code the next part of our game. I like to make my coding window

larger so that I can see all of my code a bit better, but that is a personal decision.

Remember as we move through these exercises that your spelling, capitalization, and

indentation should match. If it doesn’t, your program likely won’t work.

6. Click at the end of Line 7.

7. Press ENTER twice.

8. Type the code that you see on Lines 9 - 10 of the screenshot below, then press ENTER:

6

7
8
9
10

The code on Line 9 contains a comment.

The code on Line 10 creates a variable called clock. The variable’s value is set to be

equal to the value of the time.Clock() method. Every Pygame file comes with the time

module built in, and the time module is actually a collection of various different

objects/methods that can be used for different timing components of games. Each

object/method within the time module provides a variety of different functionality options.

In this case, Line 10 sets up a new clock object in the game and assigns that object to

the variable called clock. The clock object gives the programmer the ability to track time,

in seconds and milliseconds, for anything in the game.

9. Click at the end of Line 28, as shown in the screenshot below.

10. Press ENTER.

11. Type the code that you see on Line 29 in the screenshot below.

24

25
26
27
28

29

Line 29 creates a new constant variable called FRAMERATE and sets its value to 60.

We will use this variable later in the code when we want to tell the game how many

frames to display per second.

12. Click at the end of Line 66, as shown in the screenshot below.

13. Press ENTER.

14. Type the code that you see on Lines 67 – 68 of the screenshot below.

65

66
67
68
69

The code on Line 67 creates a command to erase a sprite. The game_window.blit

portion of the command specifies the surface to display the image on. Within the

parentheses, the BACKGROUND variable is the image that will be displayed (the

background image). You also see the location to display the image at (the location of

self.rect.x and self.rect.y). Finally, the final argument in the parentheses on Line 67 tells

the program to display only the image in that particular rectangular area that the sprite

was at. Essentially, you are covering up a sprite with a background image rectangle of

the same size in the same location.

Line 68 adjusts the position of the sprite’s rectangle to move along the negative x-axis by

2 pixels, since the self.speed variable is set to 2.

The code on Line 69, which you typed last chapter, will then display another sprite at the

new, updated x-coordinate location.

15. Click at the end of Line 117, as shown in the screenshot below:

16. Press ENTER twice.

17. Type the code that you see on Lines 119 – 120 of the screenshot below.

117

118

119
120

Line 119 contains a comment.

Line 120 calls the clock.tick function using the FRAMERATE argument. The clock.tick

function measures the time that has passed, in milliseconds, since it was last called. Our

FRAMERATE variable that we created earlier in this exercise is set to 60. By entering

the optional argument of FRAMERATE at the end of the method, we tell the clock that it

should pace the game loop so that it runs the tick method no more than 60 times per

second. The .tick function will pace the game so that there are 60 frames that pass each

second.

Remember that with each loop of the game, we move the vampire pizza sprites to the

left by 2 pixels (as specified in our self.speed variable and the code on Line 68). Since

this game loop will loop 60 times each second, and it is moving the sprite by 2 pixels

each loop, our vampire sprites should move 120 pixels to the left each second.

18. Go to File > Save Now to save your game.

19. Go to Run > Run Module to preview your game. After it loads, you should notice your

enemy sprites start to move to the left gradually.

20. You may now close out of IDLE and the game window and submit this assignment.

Final Code:

