Chapter 7 Notes

Section 1

Objectives

- **Identify** the layers of the Earth by their chemical composition.
- **Identify** the layers of the Earth by their physical properties.
- **Describe** a tectonic plate.
- Explain how scientists know about the structure of Earth's interior.

The Composition of the Earth

- The Earth is divided into ______ layers—the crust, the mantle, and the core—based on the
- _____ that make up each layer.
- The Crust is the _____ layer of the Earth. The crust is _____ to _____ km thick,
 - and is the _____ layer of the Earth.
- There are _____ types of crust—_____ and _____. Oceanic crust is

_____ and denser than continental crust.

• The Mantle is the layer of the Earth ______ the crust and the core. The mantle is

______ than the crust and contains most of the Earth's ______.

- The crust is too thick to ______ through, so scientists must draw conclusions about the
 - _____ and other properties of the mantle from observations made on the Earth's

surface.

• The Core is the central part of the Earth that lies ______ the mantle. The core makes up about

_____ of Earth's mass.

Scientists think that the Earth's core is made mostly of ______ and contains smaller amounts of nickel but almost no ______, silicon, aluminum, or magnesium.

The Physical Structure of the Earth

- The Earth is divided into five _____ layers:
 - The lithosphere
 - The asthenosphere
 - The **mesosphere**
 - The outer core
 - The inner core

• Each layer has its own set of physical ______.

• The ______, _____ layer of the Earth is called the **lithosphere.**

• The lithosphere is made of ______ parts—the crust and the rigid upper part of the mantle.

- The asthenosphere is a ______ layer of the mantle on which the tectonic plates ______.
- The asthenosphere is made of ______ rock that ______ very slowly.
- The **mesosphere** is the _____, lower part of the mantle between the asthenosphere and the outer core.
- The prefix *meso-* means "_____."
- The Earth's core is divided into _____ parts.
- The *outer core* is the ______ layer of the Earth's core that lies beneath the mantle.
- The *inner core* is the ______, _____ center of our planet that extends from
- the bottom of the outer core to the center of the Earth, about _____ km beneath the surface.

Tectonic Plates

- Pieces of the lithosphere that move around on ______ of the asthenosphere are called **tectonic plates.**
- Tectonic plates consist of the ______ and the ______, outermost part of the
- A Giant Jigsaw Puzzle Each tectonic plate fits together with the tectonic plates that ______ it.
- The lithosphere is like a jigsaw puzzle. The tectonic plates are like the pieces of the puzzle.
- Tectonic plates "_____" on the asthenosphere. The plates cover the surface of the asthenosphere, and they ______ one another and ______ around.
- The lithosphere ______ the asthenosphere. Thick tectonic plates, such as those made of ______ crust, displace more asthenosphere than do thin plates, such as those made of lithosphere.

Mapping the Earth's Interior

Scientists have learned much about the deepest parts of the planet by measuring the ______ of

the ______ waves that travel through the Earth's interior during ______.

By using ______, scientists have learned that the Earth is made of different layers.

Section 2

Objectives

- Describe Wegener's hypothesis of continental drift.
- **Explain** how sea-floor spreading provides a way for continents to move.

- **Describe** how new oceanic lithosphere forms at mid-ocean ridges.
- **Explain** how magnetic reversals provide evidence for sea-floor spreading.

Wegener's Continental Drift Hypothesis

• Continental drift is the hypothesis that states that continents once formed a single _____,

broke up, and ______ to their present locations.

• Scientist ______ developed the hypothesis in the early 1900s.

The Breakup of Pangaea

- Wegener theorized that all of the present continents were once ______ in a single, huge continent he called *Pangaea*.
- Pangaea is Greek for "_____."
- Pangaea existed about _____ million years ago.

Sea-Floor Spreading

- ______ to support the continental drift hypothesis comes from sea-floor spreading.
- Sea-floor spreading is the process by which new oceanic ______ forms as magma rises toward the surface and solidifies.
- These mid-ocean ridges are the places where sea-floor spreading takes place.
- Evidence for Sea-Floor Spreading: Magnetic Reversals Some of the most important evidence of sea-

floor spreading comes from magnetic reversals ______ in the ocean floor.

- Throughout Earth's history, the north and south ______ have changed places many times.
- Magnetic Reversals and Sea-Floor Spreading Molten rock at the mid-ocean ridge contains tiny grains of

magnetic ______ that act like ______.

- These minerals ______ with the magnetic field of the Earth. When the molten rock cools, the record of these tiny compasses remains in the rock.
- When the Earth's magnetic field reverses, the magnetic mineral grains align in the ______ direction. The new rock records the direction of the Earth's magnetic field.
- As the sea floor spreads away from a mid-ocean ridge, it carries with it a ______ of these magnetic reversals.

Section 3

Objectives

- **Describe** the three types of tectonic plate boundaries.
- **Describe** the three forces thought to move tectonic plates.
- **Explain** how scientists measure the rate at which tectonic plates move.

Tectonic Plate Boundaries

• **Plate tectonics** is the theory that explains how large pieces of the Earth's outermost layer, called *tectonic*

plates, ______ and ______.

- A ______ is a place where tectonic plates touch. All tectonic plates share boundaries with other tectonic plates.
- The type of boundary depends on how the tectonic plates ______ relative to one another. There are three types of tectonic plate boundaries:
 - Boundaries

Divergent Boundaries

- Transform Boundaries
- When two tectonic plates ______, the boundary between them is a **convergent boundary**.
- What happens at convergent boundaries depends on the kind of ______ at the ______

_____ of each tectonic plate.

- When two tectonic plates ______, the boundary between them is called a **divergent boundary**.
- New sea floor forms at ______ boundaries.
- When two tectonic plates ______ each other horizontally, the boundary between is called a **transform boundary**.
- The San Andreas Fault in California is an example of a transform boundary.

Possible Causes of Tectonic Plate Motion

• Tectonic plate movement occurs because of changes in the ______ within the asthenosphere.

Tracking Tectonic Plate Motion

• Tectonic plate movements are so ______ and gradual that you can't see or ______ them.

The movement is measured in _____ per year.

• Scientists use a system of ______ called the *global positioning system* (GPS) to

measure the _____ of tectonic plate movement.

Section 4

Objectives

- **Describe** two types of stress that deform rocks.
- **Describe** three major types of folds.
- **Explain** the differences between the three major types of faults.

- **Identify** the most common types of mountains.
- **Explain** the difference between uplift and subsidence.

Deformation

- Whether a material bends or breaks depends on the how much ______ is applied to the material.
- *Stress* is the amount of ______ per unit area on a given material.
- Different things happen to rock when different types of stress are applied.
- The process by which the shape of a rock changes because of stress is called ______.
- Rock layers ______ when stress is placed on them.
- When enough stress is placed on rocks, they can reach their _____ limit and _____.
- The type of stress that occurs when an object is ______, such as when two tectonic plates collide, is called **compression**.
- When compression occurs at a convergent boundary, large _____ can form.
- Tension is stress that occurs when forces act to ______ an object.
- Tension occurs at _____ plate boundaries, such as mid-ocean ridges, when two tectonic plates pull away from each other.

Folding

- The ______ of rock layers because of stress in the Earth's crust is called **folding.**
- **Types of Folds** Depending on how rock layers deform, different types of folds are made.
- The major types of folds are anticlines, synclines, and ______.
- Anticlines are upward-arching folds.
- *Synclines* are downward, ______ folds.
- In a *monocline*, rock layers are folded so that both ends of the fold are ______.

Faulting

• Some rock layers break when stress is applied. The surface along which rocks break and slide past each other is called a **fault**.

• The blocks of crust on each side of the fault are called _______.

- When a fault is not vertical, its two sides are either a hanging wall or a footwall.
- The type of fault depends on how the hanging wall and footwall ______ in relationship to each other.
- When a *normal fault* moves, it causes the hanging wall to move ______ relative to the footwall.
- When a *reverse fault* moves, it causes the hanging wall to move ______ relative to the footwall.

• A third major type of fault is a *strike-slip fault*. These faults form when ______ forces cause rock to break and move horizontally.

Plate Tectonics and Mountain Building

- When tectonic plates collide, land features that start as folds and faults can eventually become large mountain ranges.
- When tectonic plates undergo ______ or _____, they can form mountains in several ways.
- Folded Mountains form when rock layers are ______ together and pushed upward.
- Fault-Block Mountains form when large blocks of the Earth's crust ______ relative to other blocks.
- Volcanic Mountains form when ______ rises to the Earth's surface and erupts.

Uplift and Subsidence

- _____ movements in the crust are divided into two types—uplift and subsidence.
- **Uplift** is the rising of regions of the Earth's crust to higher elevations.
- **Subsidence** is the ______ of regions of the Earth's crust to lower elevations.
- Uplifting of Depressed Rocks Uplift can occur when large areas of land rise without ______.
- One way areas rise without deforming is process known as _____. When the crust rebounds, it

slowly springs back to its previous ______.

- Subsidence of Cooler Rocks Rocks that are hot take up more space than cooler rocks.
- The lithosphere is relatively ______ at mid-ocean ridges, but ______ as it moves farther from the ridge.
- As it cools, the oceanic lithosphere takes up less volume and the ocean floor ______.
- **Tectonic Letdown** Subsidence can also occur when the lithosphere becomes ______ in rift zones.
- A *rift zone* is a set of deep ______ that forms between two tectonic plates that are pulling away from each other.
- As tectonic plates pull apart, stress between the plates causes a series of ______ to form along the rift zone.