
Chapter 6 Practice Directions

1. . Using your Windows button menu, find and launch your IDLE program.

IDLE is the integrated development environment associated with Python. It is made up

of a code editor where you type your code along with other helpful tools that allow you to

write, save, and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic

debugging tips to programmers if there are problems with their code.

2. Your IDLE window should look something like this once it has launched.:

On Startup, IDLE will display the Python Shell, which can be used to give commands to

the computer’s operating system. Since we are viewing the shell through IDLE and not

the actual command prompt window, the commands that we type into the Shell will not

communicate directly with our operating system. However, you can type similar

commands in the Python Shell directly from the Python program (not through IDLE) and,

if you have permission to access the operating system’s commands, you can

communicate with the computer’s operating system that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do,

like writing code for our game or debugging a file.

3. Go to File > Open and then browse to find your VampirePizzaAttack file that we created

last chapter and open it.

4. Your Python file and code from last chapter will open up.

5. We will now begin to code the next part of our game. I like to make my coding window

larger so that I can see all of my code a bit better, but that is a personal decision.

Remember as we move through these exercises that your spelling, capitalization, and

indentation should match. If it doesn’t, your program likely won’t work.

6. Click at the end of Line 3.

7. Press ENTER.

8. Type the code that you see on Line 4 of the screenshot below, then press ENTER:

1

2

3
4
5

6

7

The code on Line 4 above imports the randint function from the random module. The

randint function will allow us to let the computer choose a random integer from a certain

range of numbers. In other words, it lets us randomize numbers within a program.

9. Click at the end of Line 22.

10. Press ENTER twice.

11. Type the code that you see on Lines 24 – 25 of the screenshot below, pressing ENTER

afterwards to add a blank line at the end.

21

22
23

24
25

26
27

28

Line 24 contains another comment describing what the lines of code in this block do.

Line 25 creates a constant variable called SPAWNRATE and sets its value to be equal

to 360.

12. Modify the display caption on Line 32 to say, “Vampire Pizza”

13. Add a set of parentheses around the “WINDOW_RES” specification in the scale settings

for the BACKGROUND variable on Line 37. We are just cleaning our code up a bit. The

scale would have worked fine without doing this, but since the resolution contains two

different numbers (the height and the width in pixels), it is good form to put the variable

in parentheses to make sure that both of those numbers are recognized by the

computer.

14. Click at the end of Line 44, as shown in the screenshot below.

15. Press ENTER twice.

16. Type the code that you see on Lines 46 – 49 of the screenshot below.

44

45
46

47
48

49

Line 46 contains a comment separator.

Lines 47 and 48 contains comments describing what the next section of code will do.

Line 49 creates a new class called VampireSprite. The VampireSprite class is a new

class of sprites. Whatever we create under this class will be a sprite. So, the

VampireSprite class is based off of the Sprite superclass, and any of the elements under

it will be of the sprite type.

In Pygame, a sprite can function as a class of objects that can have special features built

in. Essentially, we are creating a VampireSprite class based off of the Sprite superclass

type, and any class object generated within the VampireSprite class will be a sprite

object.

17. Press ENTER twice.

18. Type the code that you see on Lines 51 – 59 of the screenshot below.

46

47
48

49
50

51
52
53
54

55
56
57

58
59

The code on Line 51 contains a comment describing what the next block of code does.

The code on Line 52 contains a def __init__(self): method. Remember, we learned last

chapter that the __init__ method creates rules for setting up (or initiating) new instances

of VampireSprite class objects. In this case, each sprite generated until the

VampireSprite class will be a new vampire pizza sprite. The __init__ method only takes

one default argument, which is self. Essentially, you are telling any newly created

objects under the VampireClass to follow the rules in the code for setting themselves up

in the program. The object “self” is a placeholder we use when we want to create an

attribute that works with every instance of a class.

Line 53 contains a super().__init__() method. The super() method tells the program that

we want to use all of the built-in rules for the superclass of the sprite. In this case, the

superclass is Sprite. Anything that we add afterwards in the rest of the code is in addition

to the default rules that are programmed in the superclass.

Line 54 creates a new variable called self.speed and sets the speed of all sprites in this

class to 2.

Line 55 creates another variable called self.lane and uses the randint function to

generate a random integer between the numbers 0 and 4.

Line 56 adds the newly generated sprite object to the all_vampires group that we will

create later.

Line 57 creates the self.image variable. The self.image variable’s value will be a copy of

the VAMPIRE_PIZZA image. You want to copy the image because you will want more

than one vampire pizza sprite in your game at a time using that image. If you didn’t copy

it, then whenever new sprites generate, the older sprites would lose their image on the

screen and become invisible. Creating a new copy of the image on the screen for each

new sprite would avoid this program.

Line 58 creates a y variable and sets its value to be whatever coordinate position it

needs to have to be in the middle of the selected lane. Remember, the lane is a random

number between 0 and 4. The math function for finding the y-coordinate was mainly

generated by trial and error to see where different numbers generated the sprite at.

Line 59 creates a self.rect variable. This line creates a rect (rectangle) for each sprite

and places the rectangle just off the right side of the screen in the correct lane it is

supposed to be on. The rectangle is then filled with the self.image picture, which is the

VAMPIRE_PIZZA image. All sprites on Pygame need a rect and a surface to move on.

Unless otherwise specified, every rect will generate at the x- and y-coordinates of 0, 0

and place the sprite and any other elements (the sprite’s picture, etc.) inside of it. To

change the position the rectangle generates at, you would need to manually enter x- and

y-coordinates for each rect, which is what we have done at the end of Line 59 in

parentheses. The end of Line 59 tells the rect to center around the x-coordinate of 1100

(just off the screen) and the y coordinate of whatever we calculated in Line 58 (the value

of the y variable).

19. Press ENTER twice.

20. Type the code that you see on Lines 61 – 63 of the screenshot below.
56

57

58
59
60
61

62
63

Line 61 creates a comment describing what the code below it does.

Line 62 creates another method called update. This method will use the self and the

game_window arguments to run.

Line 63 blits the new sprite to the game_window, meaning that it reloads the

game_window to display the new sprite object instance that was just created. When it

reloads, the newest sprite will display using its image and the x- and y-coordinates of the

sprite’s rect.

21. Press ENTER twice.

22. Type the code that you see on Lines 65 – 69 of the screenshot below.

62

63

64

65

66

67

68

69

Lines 65 - 68 create comments describing what the code in the following block does.

Line 69 creates the all_vampires variable and sets its value to be equal to a group of

sprites. This group will hold all instances of the VampireSprite class because each time

a new instance is generated, it adds itself to the group (using the .add method on Line

56.

23. Remove the two lines highlighted in gray in the screenshot below. They appear on Lines

84 – 85 of your code. Just backspace them or delete the two lines to get rid of the code.
78

79

80

81

82

83

84
85

24. Click at the end of Line 98.

25. Press ENTER twice.

26. Type the code that you see on Lines 100 - 103 Of the screenshot below.
98

99

100

101

102

103

Line 101 contains a comment describing what the code does.

Lines 102 – 103 contain an if function that checks to determine if a random number

generated using the randint function is equal to 1. The random number generated will be

between 1 and the value of the SPAWNRATE variable, which is currently 360. If the

number generated is 1, it will generate a new instance of VampireSprite.

27. Click after your “#Update display.” comment and press ENTER.

28. Type the code that you see on Lines 107 - 109 of the screenshot below.

105

106

107

108

109
110
111
112

113

Line 107 begins a “for” loop that will update the location of each vampire pizza sprite

once every iteration of the game loop runs. In other words, this loop will go through each

sprite in the all_vampires group and update its location in the game window.

29. Go to File > Save. Before we test our game, we need to save it.

30. Now, go to Run > Run Module.

31. After giving your game window time to load, you should see your background image in

your game window with a grid of white lines overlaid on it. You should also see pizza

vampire sprite images start to generate on the right-hand size of your screen.

32. You can close out of the Python file. You can also close out of the Python Shell if you

still have it open.

Final Code:

