Date

Chapter Test C CHAPTER 6 For use after Chapter 6 Solve the inequality, if possible. **2.** $x - \frac{3}{8} < \frac{1}{4}$ **1.** $x + 5.8 \le 4.6$ **3.** $-\frac{4}{7}x \ge -12$ **4.** 6(x-2) > 3(2x-5)

- **5.** 4x > 0.2(50 + 20x)
- 6. 3(3-2x) > 5x 6 + 2x
- 7. Write and solve an inequality to find the possible values of x if the minimum area of the trapezoid is to be at least 45 square feet.

Translate the verbal sentence into an inequality. Then solve the inequality.

- **8.** The difference of 11 and c is at least -23.
- **9.** The product of -3.9 and w is at most 19.5.
- **10.** Three times the product of the difference of 3x and 1 is greater than the sum of 3x and 4.
- **11.** The quotient of the difference of 5 times a number *n* and 9 and 2 is greater than -2 and less than or equal to 3.

Solve the inequality, if possible. Graph your solution.

- **13.** $-\frac{2}{3}x < 4$ and $\frac{3}{4}x < -6$ **12.** $1 \le 3 + \frac{2}{3}x < 7$
 -4
 -2
 0
 2
 4
 6
 8
 14. $\frac{1}{2}(x+1) > 3 \text{ or } 0 < -2 - x$ **15.** $3x - 9 \le 9 \text{ or } 4 - x \le 3$ <+++++++++++++++++> −4 −2 0 2 4 6 8 <+ + + + + + + + + + >
 0 1 2 3 4 5 6 7 8
- **16.** Your scores on four algebra tests are 93, 69, 89, and 97. After the next test, you want your average to be between 84 and 92, which is a B average. What are the possible scores for your next test?

Ans	wers	
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		
11.		
12.		
	See left.	
13.	See left.	
14.		
15.	See lelt.	
	See left.	

16.

Name.

Date

-x

CHAPTER 6	Chapter Test C For use after Chapter 6	continued
	,	

Solve the equation, if possible.

- **17.** $-3\left|2-\frac{5}{4}x\right| = 18$ **18.** 2|3x+8| - 13 = -5
- **19.** $\left|\frac{9-4x}{2}\right| = 3$

Write an absolute value equation represented by the graph.

20. $\langle | \phi | | | | \phi | \rangle$ 1 2 3 4 5 6 7 8 9 **21.** -5-4-3-2-1 0 1 2

Solve the inequality. Graph your solution.

- **22.** $-3\left|4-\frac{1}{2}x\right| \le -12$ **23.** $\frac{5}{3}\left|7-4x\right| 9 > 6$ -16 −8 0 8 16 -2-1 0 1 2 3 4 5 6
- 24. For your chemistry experiment, you are trying to keep the water temperature at 35°C. For the experiment to work properly, the actual temperature can vary by as much as 1%. Write and solve an absolute value inequality to find the acceptable temperatures of the water.

Graph the inequality.					
25.	4(x-2) < y-5	26. $2x - 3(y + 1) \ge y - (4$			
	3				
	-1				
	-3 -1 1 3 x	-3 -1 1 3 x			
	-3	-3			

In Exercises 27 and 28, use the following information.

To send a box priority mail by the United States Postal Service, the sum of the length x (in inches) and twice the sum of the width y (in inches) and the height of the box must not exceed 108 inches.

- 27. Write and graph an inequality that describes the possible lengths and widths of a 24-inch high box that can be sent by priority mail.
- Identify and interpret one of the solutions. 28.

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.