## Chapter 4 Take home Test

Period

Evaluate each expression.

1) 
$$\log_4 - 16$$

2) 
$$\log_{16} \frac{1}{4}$$

Condense each expression to a single logarithm.

3) 
$$\log_4 a + 5 \log_4 b + 2 \log_4 c$$

4) 
$$6\log_4 z + 6\log_4 x - 3\log_4 y$$

Expand each logarithm.

$$5) \log_5 \left(z \cdot x^2 \cdot y\right)^6$$

6) 
$$\log \left( \frac{(w \cdot u)^5}{v} \right)^3$$

Identify the domain and range of each.

7) 
$$f(x) = \log_2(4x + 7) - 4$$

8) 
$$f(x) = \log_6 (4x + 16) - 3$$

Solve each equation, exact values only. NO DECIMALS.

9) 
$$\log_{16} \left(-14r - 2\right) = \log_{16} \left(r^2 + 43\right)$$

10) 
$$\log_{16} (x^2 + 75) = \log_{16} (17x + 3)$$

11) 
$$\log_2(x+6) + \log_2 x = 4$$

12) 
$$\ln x^2 + \ln 9 = 2$$

Rewrite each equation in logarithmic form.

13) 
$$b^{-13} = 118$$

14) 
$$3^3 = 27$$

Rewrite each equation in exponential form.

15) 
$$\log_{256} 16 = \frac{1}{2}$$

$$16) \log_4 m = n$$

Use the properties of logarithms and the logarithms provided to rewrite each logarithm in terms of the variables given.

17) 
$$\log_{9} 11 = R$$
  
 $\log_{9} 12 = S$   
 $\log_{9} 8 = T$   
Find  $\log_{9} 11979$ 

18) 
$$\log 6 = R$$
 $\log 4 = S$ 
 $\log 7 = T$ 
Find  $\log \frac{400}{7}$ 

Solve each equation, exact values only. NO DECIMALS.

19) 
$$16^{3-3x} = \left(\frac{1}{32}\right)^{-3x-2}$$

20) 
$$36^{-2m} \cdot 216^{2m-3} = \left(\frac{1}{36}\right)^{2m}$$

21) 
$$-7 \cdot 13^{n-7} = -25$$

22) 
$$2 \cdot 20^{n+2} = 27$$

Solve the exponential model.

23) A car engine runs at a temperature of 190°F. When the engine is turned off, it cools according to Newton's Law of Cooling with constant K = 0.0341, where the time is measured in minutes. Find the time needed for the engine to cool to 90°F if the surrounding temperature is 60°F.

## Sketch the graph of each function.

24) 
$$f(x) = 4 \cdot 2^{x-2} - 2$$



25) 
$$f(x) = -3 \cdot \left(\frac{1}{2}\right)^{x+1} + 2$$



## Write an equation for each graph.



27)



- 28) A sample of bismuth-210 decayed to 33% of its original mass after 8 days.
  - a. Find the half-life of this element.
  - b. Find the mass remaining after 12 days.
- 29) Suppose that \$12,000 is invested in a savings account paying 5.6% interest per year.
  - a. Write the formula for the amount in the account after t years if interest is compounded monthly.
  - b. Find the amount in the account after 3 years if interest is compounded daily.
  - c. How long will it take for the amount in the account to grow to \$20,000 if interest is compounded semiannually?