Chapter 4 Take home Test

Period

Evaluate each expression.

1)
$$\log_{6} -36$$

Condense each expression to a single logarithm.

3)
$$2\log_3 11 + \log_3 5 + \frac{\log_3 6}{3}$$

4)
$$\frac{3\log_2 5}{2} + \frac{\log_2 6}{2} + \frac{\log_2 11}{2}$$

Expand each logarithm.

5)
$$\log_8 \left(ab^3 \cdot c^5\right)$$

6)
$$\log_7 \left(w \sqrt[3]{x \cdot y \cdot z} \right)$$

Identify the domain and range of each.

7)
$$f(x) = \log_5 (2x - 3) - 4$$

8)
$$f(x) = \log_3 (3x - 1) - 1$$

Solve each equation, exact values only. NO DECIMALS.

9)
$$\log_9(n^2 + 19) = \log_9(-12n - 1)$$

10)
$$\log_{19} (4m^2 - 6m) = \log_{19} (-9 + 3m^2)$$

11)
$$\log_2 9 + \log_2 x^2 = 4$$

12)
$$\log_4 x - \log_4 (x - 4) = \log_4 53$$

Rewrite each equation in logarithmic form.

13)
$$p^{-6} = 127$$

14)
$$20^m = n$$

Rewrite each equation in exponential form.

15)
$$\log_x \frac{33}{20} = y$$

16)
$$\log_{15} \frac{1}{15} = -1$$

Use the properties of logarithms and the logarithms provided to rewrite each logarithm in terms of the variables given.

17)
$$\log_8 5 = U$$

$$\log_8 12 = V$$

$$\log_8 9 = W$$
Find $\log_8 \frac{125}{9}$

18)
$$\log_{7} 12 = X$$

 $\log_{7} 8 = Y$
 $\log_{7} 5 = Z$
Find $\log_{7} 1225$

Solve each equation, exact values only. NO DECIMALS.

19)
$$243^{-2n} = 81^{-3n+1}$$

$$20) \ 625^{3m} \cdot \left(\frac{1}{5}\right)^{3m} = 5^4$$

21)
$$7^{-4r} + 9 = -78$$

22)
$$5 \cdot 20^{10a} = 18$$

Solve the exponential model.

23) A car engine runs at a temperature of 190°F. When the engine is turned off, it cools according to Newton's Law of Cooling with constant K = 0.0341, where the time is measured in minutes. Find the time needed for the engine to cool to 90°F if the surrounding temperature is 60°F.

Sketch the graph of each function.

24)
$$f(x) = -\frac{1}{4} \cdot 2^{x-2} - 2$$

Write an equation for each graph.

- 28) A sample of bismuth-210 decayed to 33% of its original mass after 8 days.
 - a. Find the half-life of this element.
 - b. Find the mass remaining after 12 days.

25)
$$f(x) = 4 \cdot \left(\frac{1}{2}\right)^{x+1} + 1$$

27)

- 29) Suppose that \$12,000 is invested in a savings account paying 5.6% interest per year.
 - a. Write the formula for the amount in the account after t years if interest is compounded monthly.
 - b. Find the amount in the account after 3 years if interest is compounded daily.
 - c. How long will it take for the amount in the account to grow to \$20,000 if interest is compounded semiannually?