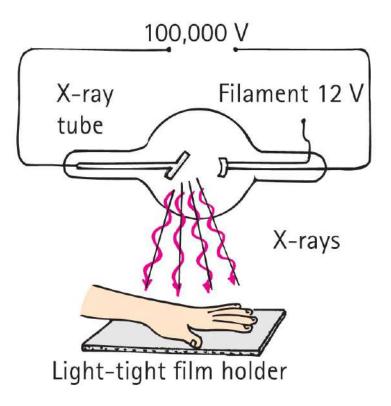

Lecture Outline

Chapter 33: The Atomic Nucleus and Radioactivity and Chapter 11: Isotopes

Part 1

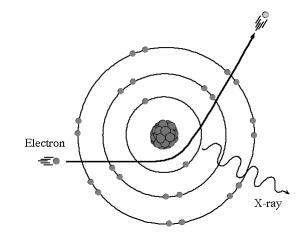
Roentgen and the first x-ray:

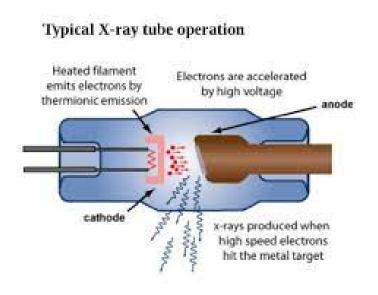

Roentgen: His wife's hand:

"I have seen my death!"

X-Rays and Radioactivity

- Roentgen discovered X-rays produced by a beam of electrons striking the glass surface of a gas-discharge tube.
- He found that X-rays could pass through solid materials, could ionize the air, showed no refraction in glass, and were undeflected by magnetic fields.


Classwork


1. What did Roentgen discover about a cathode-ray beam striking a glass surface?

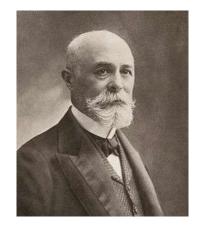
X-Rays and Radioactivity, Continued

X-rays are high-frequency electromagnetic waves, usually emitted by the de-excitation of the innermost orbital electrons of atoms.

An energetic beam of electrons striking a solid surface excites the innermost electrons and produces higher-frequency photons of X-radiation (dentist x-rays).

X-Rays and Radioactivity, Continued-1

- X-ray photons have high energy and can penetrate many layers of atoms before being absorbed or scattered.
- X-rays do this when they pass through your soft tissue to produce an image of the bones inside your body.



Classwork:

2. What kind of rays are X-rays?

Henri Becquerel (French)

Discovered evidence of radioactivity (he and the Curies received a Nobel Prize together in 1903)

He thought the uranium rocks had to be exposed to the Sun before they would make an image on a photographic plate. One rainy day, he put the rock in a drawer next to a photographic plate. The next day, he developed the plate anyway and saw an image made by the rock.

→ The rocks were "active" without the sun!

Classwork:

3. What did the Becquerel discover about uranium?

Marie Curie

Winner of 2 Nobel Prizes: in Chemistry and Physics (only person to win 2 in science) Processed tons of rocks by hand. Discovered and named 2 elements: Polonium and Radium First female professor at the Sorbonne (University of Paris) Daughter Irene also won the Nobel Prize in Chemistry.

[©] <u>Died from</u> radiation poisoning.

Classwork:

4. What two elements did Pierre and Marie Curie discover?

Radioactivity

- Radioactivity is the process of nuclear decay (radioactive decay).
- → When a nucleus is unstable, it "decays" and emits particles.
- Nothing new in the environment.
- It warms Earth's interior, is in the air we breathe, and is present in all rocks (some in trace amounts).
- It is natural and has been around since Earth formed.
- Humans have added a small amount.

X-Rays and Radioactivity CHECK YOUR NEIGHBOR

The radioactive decay of nature's elements occurs in the

- A. soil we walk on.
- B. air we breathe.
- C. interior of Earth.
- D. All of the above.

X-Rays and Radioactivity CHECK YOUR ANSWER

The radioactive decay of nature's elements occurs in the

D. All of the above.

Alpha, Beta, and Gamma Rays CHECK YOUR NEIGHBOR

The origins of radioactivity go back to

A. military activities in the mid-20th century.

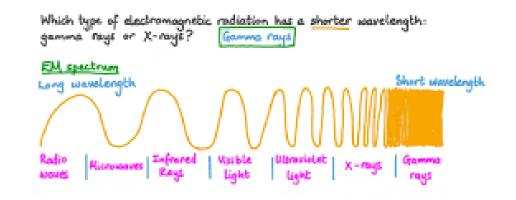
- B. the Industrial Revolution two centuries ago.
- C. the beginning of human error.
- D. before humans emerged on Earth.

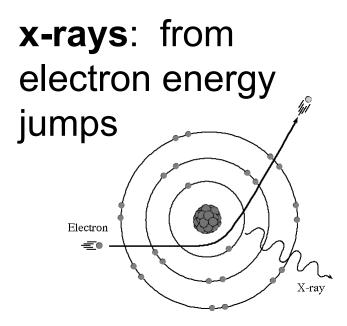
Alpha, Beta, and Gamma Rays CHECK YOUR ANSWER

The origins of radioactivity go back to

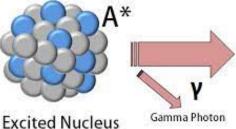
D. before humans emerged on Earth.

Alpha, Beta, and Gamma Rays


- Radioactive elements emit three distinct types of radiation:
- α —alpha:
 positively charged
 (helium nuclei)
- β —beta:
 negatively charged
 (electrons)
- Alpha particle = helium nucleus (+2 electric charge) Magnet Magnet Radium sample


- γ —gamma:
- electromagnetic radiation
- not charged, so they are not bent by a magnetic field

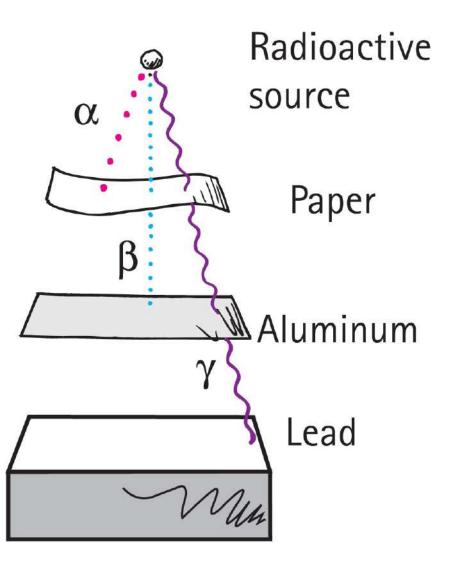
Classwork


5. Why aren't gamma rays deflected in a magnetic field?

Gamma rays have more energy than x-rays. Why?

γ**-rays:** from nucleon energy jumps

Relaxed Nucleus


Bigger energy jumps \rightarrow higher photon energy \rightarrow E = hf \rightarrow higher frequency

Classwork

6. Which has the higher frequency: X-rays or gamma rays?

Alpha, Beta, and Gamma Rays, Continued

- Relative penetrations:
- α : easiest to stop
- γ: hardest to stop

CHECK POINT

Pretend you are given three radioactive rocks—one an alpha emitter, one a beta emitter, and one a gamma emitter. You can throw away one, but of the remaining two, you must hold one in your hand and the other you must place in your pocket. What can you do to minimize your exposure to radiation?

Alpha, Beta, and Gamma Rays CHECK YOUR NEIGHBOR, Continued

Any atom that emits an alpha particle or beta particle

- A. becomes an atom of a different element, always.
- B. may become an atom of a different element.
- C. becomes a different isotope of the same element.
- D. increases its mass.

Alpha, Beta, and Gamma Rays CHECK YOUR ANSWER, Continued

Any atom that emits an alpha particle or beta particle

A. becomes an atom of a different element, always.

Explanation:

Contrary to the failures of alchemists of old to change elements from one to another, this was going on all around them—unnoticed.

Alpha, Beta, and Gamma Rays CHECK YOUR NEIGHBOR, Continued-1

Which of these is the nucleus of the helium atom?

- A. Alpha
- B. Beta
- C. Gamma
- D. All are different forms of helium.

Alpha, Beta, and Gamma Rays CHECK YOUR ANSWER, Continued-1

Which of these is the nucleus of the helium atom?

A. Alpha

© 2015 Pearson Education, Inc.

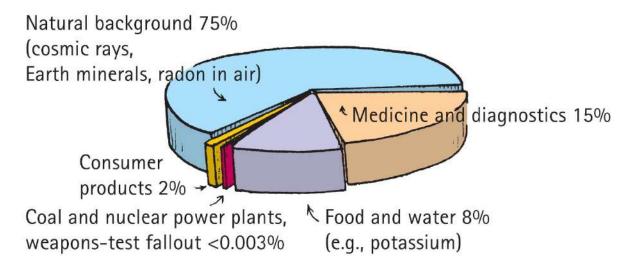
Alpha, Beta, and Gamma Rays CHECK YOUR NEIGHBOR, Continued-2

Which of these is actually a high-speed electron?

- A. Alpha
- B. Beta
- C. Gamma
- D. All are high speed.

Alpha, Beta, and Gamma Rays CHECK YOUR ANSWER, Continued-2

Which of these is actually a high-speed electron?

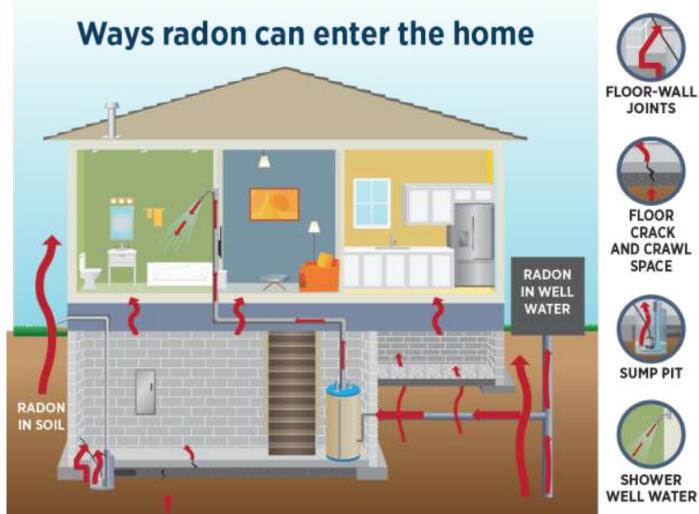

B. Beta

Explanation:

Choice D may be true, but doesn't directly answer the question.

Environmental Radiation

- Most radiation from natural background
- About 1/5 from nonnatural sources



The combustion of coal releases about 13,000 tons of radioactive thorium and uranium into the atmosphere each year. The nuke power industry generates 10,000 tons of radioactive waster per year.

Classwork

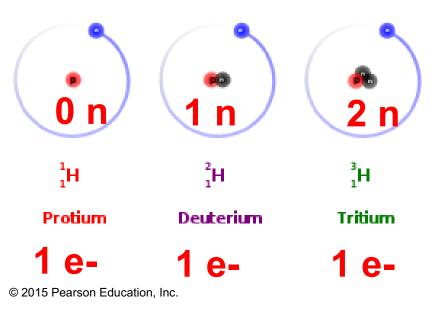
8. Do humans receive more radiation from artificial or from natural sources of radiation?

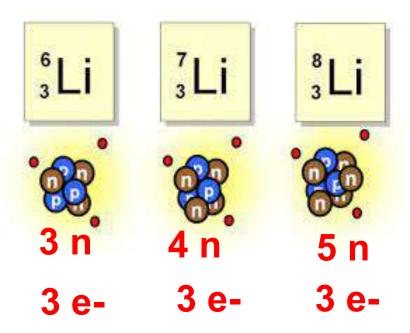
Radon, a common environmental hazard

- Food irradiation kills microbes.
 - γ rays, x-rays and electron beams are used.
 - Doesn't make the food radioactive.
 - Helps prevent spoilage.

Your body is radioactive

- Bananas contain potassium.
- Your body contains some radioactive potassium.
- Between every heartbeat, about 60,000 of these decay, giving off gamma rays.
- Some carbon in the food you eat is radioactive.
- If radiation damages the DNA of a cell, it can cause a mutation.
- These mutations can cause cancer.
- They can also be passed on to your offspring.


9. Is the human body radioactive? Explain.


Isotopes:

- Atoms of the same element (same number of protons p) with different numbers of neutrons n
- Identical chemical behavior

Isotopes of hydrogen all have 1 proton:

Isotopes of lithium all have 3 protons:

 \rightarrow Protons p in nucleus equals electrons e⁻ around nucleus, but not necessarily neutrons n.

 \rightarrow An isotope is identified by its *mass number* (total number of protons and neutrons in the nucleus or number of nucleons)

Example:

The iron isotope with 26 p and 30 n has a mass number 56, referred to as iron-56.

- \rightarrow The atomic number of iron is **always 26** = # p
- \rightarrow A neutral atom of iron-56 has 26 p and 26 e⁻.
- \rightarrow The atomic number = # of p

= # of e⁻ in a neutral atom.

Isotopes CHECK YOUR NEIGHBOR

The atomic number of an element matches the number of

- A. protons in the nucleus of an atom.
- B. electrons in a neutral atom.
- C. Both of the above.
- D. None of the above.

Isotopes CHECK YOUR ANSWER

The atomic number of an element matches the number of

C. Both of the above.

Comment:

When the atomic number doesn't match the number of electrons, the atom is an ion.

Isotopes CHECK YOUR NEIGHBOR, Continued

A nucleus with an atomic number of 44 and a mass number of 100 must have

- A. 44 neutrons.
- B. 56 neutrons.
- C. 100 neutrons.
- D. All of the above.

Isotopes CHECK YOUR ANSWER, Continued

A nucleus with an atomic number of 44 and a mass number of 100 must have

B. 56 neutrons.

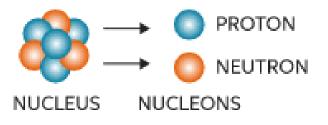
Comment:

Be sure to distinguish between *neutron* and *nucleon*. Of the 100 nucleons in the nucleus, 56 are neutrons. A neutron *is* a nucleon, as is a proton.

Periodic Table

99.9% of everyday atoms are stable—not radioactive. \rightarrow All elements with an atomic number greater than 82 (lead, Pb) are radioactive.

1 H		PubChem												1	² He		
Normatal 3	4				1		Atomic Number						5 6 7 8 9				
Li	Be				Н	S	ym	bol				B	ċ	Ń	Ô	F	¹⁰ Ne
Lithium Akali Metal	Beryllium Alkaline Earth Metal			н	ydrogen	Nam						Boron	Carbon	Nitrogen	Oxygen Nermetal	Fluorine Helogen	Neon Noble Das
11	12			N	Nonmetal		Chemical Group Block					13	14	15	16	17	18
Na	Mg											Aluminum	Si	Phosphorus	Sulfur	Cl	Argon
Alkali Metal	Alkaline Earth Metal	21	22	23	24	25	26	27	28	29	30	Post-Trensition Netal	Vectolicid 32	Nonrretal 33	Normatal 34	Halogen	Neble Gas
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium Alkali Metal	Calcium Alkaline Earth Metal	Scandium Transition Metal	Titanium Transition Metal	Vanadium Transition Metal	Chromium Transition Metal	Manganese Transition Metal	Iron Transition Metal	Cobalt Transition Metal	Nickel Transition Metal	Copper Transition Metal	Zinc Transition Metal	Gallium Post-Transition Metal	Germanium Metalloid	Arsenic Netalloid	Selenium Normatal	Bromine Halogen	Krypton Noble Gas
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rubidium	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Palladium	Ag	Cd	In	Sn	Sb	Te	lodine	Xe
Aikali Metal	Alkaline Earth Metal	Transition Metal	Transitian Metal	Transition Metal	Transition Metal	Transition Metal	Transition Metal	Transitian Metal	Transition Metal	Transition Metal	Transition Metal	Post-Transition (tal	Past-Transition Metal		Vecalisid 84	Halogen	Noble Das
Ĉs	Ba	*	⁷² Hf	Ta	W	Re	0s	⁷⁷ Ir	Pt	Au	Нg	81 T	Pb	Bi	Po	⁸⁵ At	Rn
Cesium Atual Metal	Barium Alkaline Earth Metal		Hafnium Transition Netal	Tantalum Transition Metal	Tungsten Transition Metal	Rhenium Transition Metal	Osmium Transition Metal	Iridium Transition Metal	Platinum Transition Metal	Gold Transition Metal	Mercury Transition Metal	Thalliu Post-Trensitio etal	Lead Pest-Transition Metal	ismuth	Polonium	Astatine	Radon Noble Gas
87	88		104	105	106	107	108	109	110	111	112	113		115	116	117	118
Fr	Ra	••	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
Francium Alkali Metal	Radium Alkaline Earth Metal		Rutherfordium Transition Netal	Dubnium Transition Metal	Seaborgium Transition Metal	Bohrium Transition Metal	Hassium Transition Metal	Meitnerium Transition Metal	Darmstadtium Transition Metal	Roentgenium Transition Metal	Copernicium Transition Metal	Nihonium Post-Trensition Metal	Flerovium Post-Transition Metal	Moscovium Post-Transition Metal	Livermorium Post-Transition Metal	Tennessine Helogen	Oganesson Noble Gas
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
		•	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			Lenthenum	Cerium Lanthanide	Praseodymium	Neodymium Lanthanide	Promethium Lanthanide	Samarium Lenthenide	Europium Lenthenide	Gadolinium Lentheride	Terbium Lanthanide	Dysprosium Lanthanida	Holmium	Erbium Lanthanide	Thulium Lentheride	Ytterbium Lanthanide	Lutetium Lenthenide
**			89	90 Th	91 Do	92	93	94 Du	95 A ma	96 Cm	97 Bk	98	99 E o	100	101	102	103
			AC	Th	Pa	Uranium		Pu	Americium	Cm	Berkelium	Cf	ES	Fm	Md Mendelevium	Nobelium	Lr
			Actinide	Activide	Actinide	Actinida	Activide	Actinide	Activide	Actiside	Actinida	Activide	Actinide	Activide	Actiside	Actinide	Activide

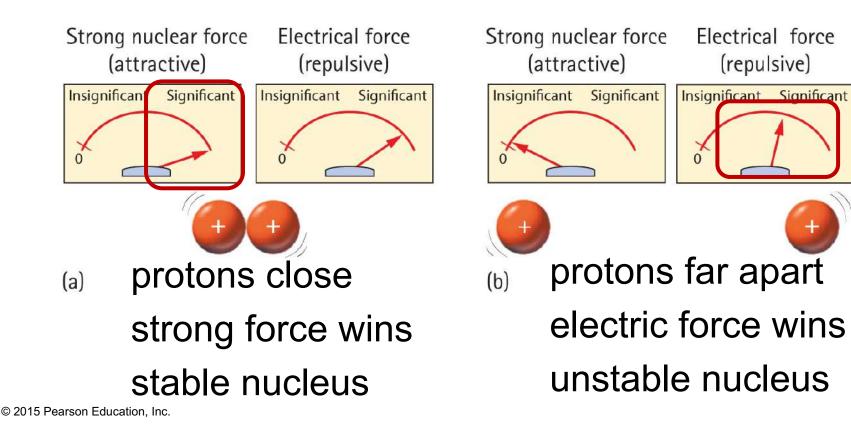

PERIODIC TABLE OF ELEMENTS

Pb = lead

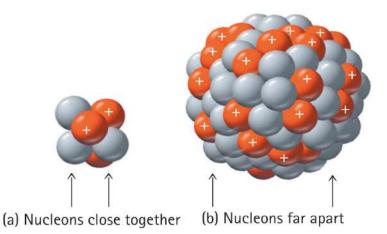
Why are some atoms radioactive?

Some isotopes are radioactive. Others are not. Why?

- Look inside nucleus:
- The nucleus contains *nucleons*: protons and neutrons


There are 2 forces that act on nucleons:

- 1. Strong force of attraction between all nucleons
- \rightarrow All protons and neutrons attract each other.
- 2. Electric force of repulsion between protons.
- \rightarrow Neutrons are not repelled by this force.


Classwork

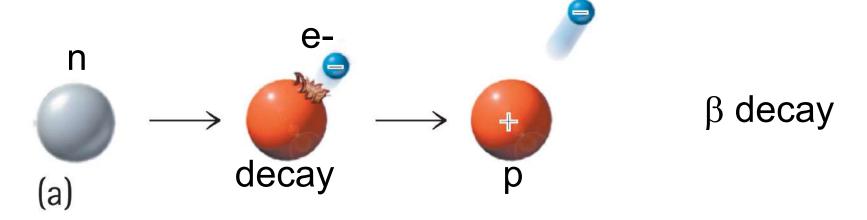
11. Name the two different nucleons.

- The strong force is an attractive force.
- It holds nucleons together.
- It is short range \rightarrow weak if nucleons are far apart
- Electric repulsion force is long-range

- The strong force is more effective with smaller nuclei.
- In big nuclei, the protons are too far apart for the strong force to bind them well.

- Neutrons are the glue that binds the nucleus.
- Neutrons have the strong-force attraction without the electrical repulsion.
- The bigger the nucleus, the more neutrons are needed to hold it together.
- Beyond Pb, the extra neutrons cannot hold it together—the nucleus decays (radioactivity).

Classwork

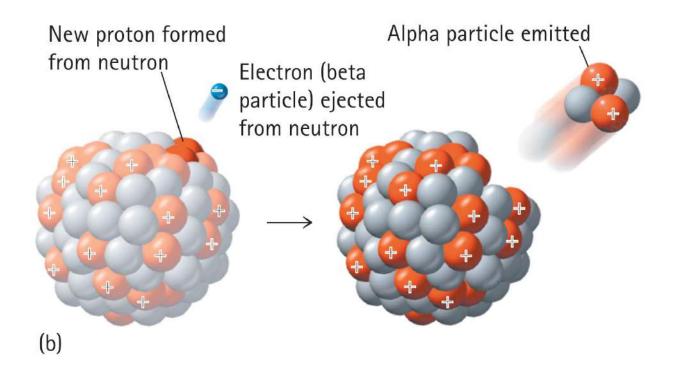

- 12. Why doesn't the repulsive electrical force of protons in the atomic nucleus cause the protons to fly apart?
- 13. Why is a larger nucleus generally less stable than a smaller nucleus?

14. What is the role of neutrons in the atomic nucleus?

15. Which contains the higher percentage of neutrons: large nuclei or small nuclei?

© 2015 Pearson Education, Inc.

 A lone neutron n is radioactive and spontaneously transforms to a proton p and an electron e-.



This can be written as an equation: $n \rightarrow p + e$ -The arrow \rightarrow means "decays into"

 A neutron needs protons around to keep this from happening.

Too many protons:

- If a neutron in a nucleus decays by emitting an electron, there is an extra proton in the nucleus.
- This makes it unstable, so it emits an α particle:

The Atomic Nucleus and the Strong Force CHECK YOUR NEIGHBOR

The strong force is a force in the

- A. atom that holds electrons in orbit.
- B. nucleus that holds nucleons together.
- C. Both A and B.
- D. Neither A nor B.

The Atomic Nucleus and the Strong Force CHECK YOUR ANSWER

The strong force is a force in the

B. nucleus that holds nucleons together.

The Atomic Nucleus and the Strong Force CHECK YOUR NEIGHBOR, Continued

In the nucleus of an atom, the strong force is a relatively

- A. short-range force.
- B. long-range force.
- C. unstable force.
- D. neutralizing force.

The Atomic Nucleus and the Strong Force CHECK YOUR ANSWER, Continued

In the nucleus of an atom, the strong force is a relatively

A. short-range force.