
Lecture Outline

Chapter 31: Light Quanta

© 2015 Pearson Education, Inc.

Matter waves

Since it was known that light can act like a:

- A) wave \rightarrow diffraction and interference
- B) Particle (photon) \rightarrow photoelectric effect

In 1924, Louis de Broglie reasoned that...matter can act like a:

- A) particle \rightarrow already assumed to be one
- B) wave \rightarrow diffraction and interference???

de Broglie's Hypothesis:

Every particle of matter is associated with a corresponding wave. According to Louis de Broglie, a particle's wavelength is related to its momentum.

$$\lambda = \frac{h}{momentum}$$
$$= \frac{h}{(mass)(speed)}$$

Particles as Waves: Electron Diffraction CHECK YOUR NEIGHBOR

When we speak of de Broglie waves, we're speaking of the wave nature of

- A. transverse waves.
- B. longitudinal waves.
- C. particles.
- D. quantum uncertainties.

Particles as Waves: Electron Diffraction CHECK YOUR ANSWER

When we speak of de Broglie waves, we're speaking of the wave nature of

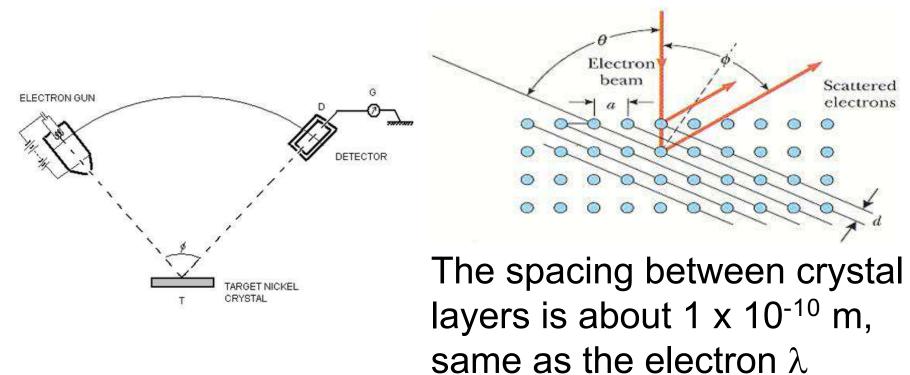
C. particles.

Bullet vs. electron

Wavelength of a 20-gram bullet traveling at 330 m/s:

$$\lambda = \frac{h}{momentum} = \frac{6.63 \times 10^{-34}}{(0.020 \, kg)(330 - \frac{m}{s})} 1.0 = x \, 10^{-34} \, \text{m}$$

→ a millionth millionth millionth millionth of an atom! Wavelength of a 9.11 x 10^{-31} kg electron moving at 2% of the speed of light:


$$\lambda = \frac{h}{momentum} = \frac{6.63 \times 10^{-34}}{(9.11 \times 10^{-31} \text{ kg})(3.0 \times 10^{6} \frac{m}{s})} =$$

\rightarrow about the diameter of an atom

So bullet diffraction is not observed.

© 2015 Pearson Education, Inc.

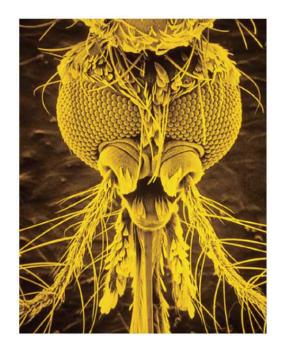
...if the electrons are fired at an obstacle that is about the same size as their λ (the surface of a crystal of Ni). This experiment confirmed de Broglie's hypothesis of wave-particle duality, and was a milestone in the creation of quantum mechanics.

Particles as Waves: Electron Diffraction, Continued

• Interference patterns of beams of light

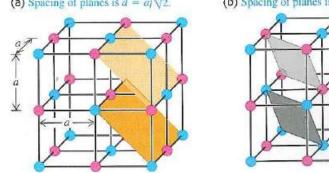
Electron interference pattern:

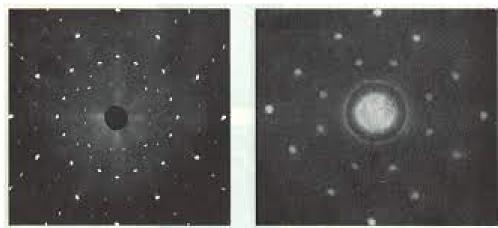

Firing one electron at a time builds up the same interference pattern as light! **Electrons** impact film as particles, but make a wavelike pattern.


14. What evidence can you cite for the wave nature of particles?

15. When electrons are diffracted through a double slit, do they hit the screen in a wavelike way or in a particle-like way? Is the pattern of hits wavelike or particle-like?

Particles as Waves: Electron Diffraction, Continued-1

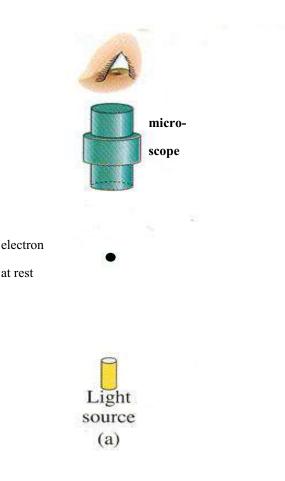

 Electron microscope uses the wave nature of electrons to create images similar to the image of the mosquito shown here.



Neutrons can act like waves, too

When neutrons are fired at salt crystals, they make diffraction patterns when they interact with the crystal planes in salt: (a) Spacing of planes is $d = a/\sqrt{2}$ (b) Spacing of planes is $d = a/\sqrt{3}$.

© 2015 Pearson Education, Inc.


Dr Quantum Explains All:

Video: https://www.youtube.com/w atch?v=Q1YqgPAtzho

Heisenberg's Uncertainty Principle

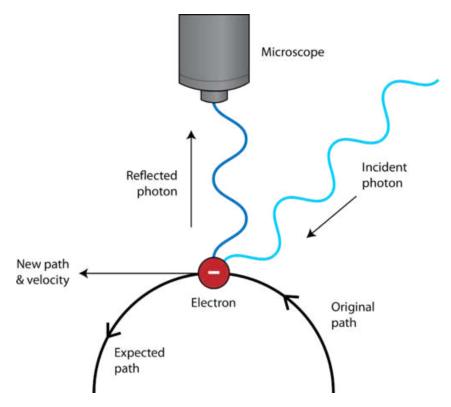
- Uncertainty principle
 - The act of observing something as tiny as an electron probes the electron and, in so doing, produces a considerable uncertainty in either its position or its motion.

Two points:

1. Putting a thermometer to measure the temp of a cup of coffee changes the temp because the thermometer absorbs heat.

 \rightarrow This is not *quantum* uncertainty.

 \rightarrow The results can be predicted and easily measured with knowledge of energy and how heat flows


- 2. Observing steam rising from coffee is different from "probing" it with the thermometer
- A) your glance involves no interaction
- B) the thermometer interacts with the coffee and changes its temp

20. What is the distinction in this book between passively and actively observing an event?

Observing vs. Probing

Physicists use light to both observe and probe:

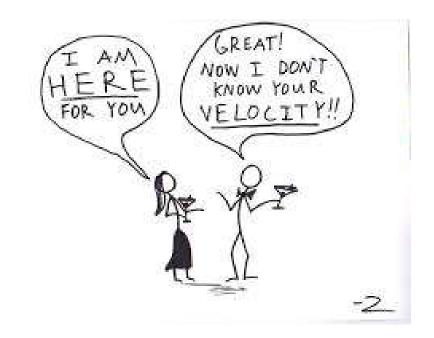
For example: Light is used to observe where a particle is located in space (its Δx). By doing so, its momentum (Δp) is altered.

Shining light to see where a baseball is would not change its momentum by any measurable amount because a baseball is too big!

16. In which of the following are quantum uncertainties significant: measuring simultaneously the speed and location of a baseball; of a spitball; of an electron? German physicist Werner Heisenberg called this the *uncertainty principle*.

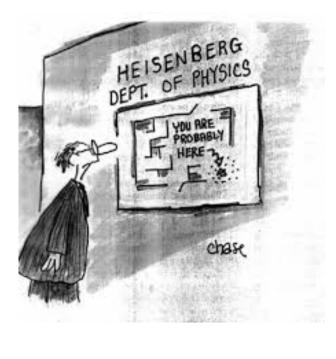
- The mathematical statement of it involves:
- The symbol Δ = "uncertainty in measurement of"
- Δp is uncertainty in measurement of momentum p
- Δx the uncertainty in position x

When Δx and Δp are multiplied together, the product must be equal to or greater than Planck's constant, *h*, divided by 2π , which is represented as \hbar (called *h*-bar).


$$\Delta p \cdot \Delta x \ge \hbar$$

17. What is the uncertainty principle with respect to momentum and position?

The uncertainty principle stated another way: You cannot simultaneously know the position x and the momentum p (or speed) of a particle.

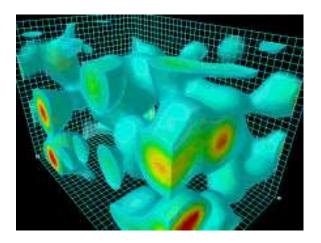

In other words:

If you decrease the uncertainty in position Δx by measuring something is, you will increase the uncertainty in what you know about its momentum (speed) Δp .

18. If measurements show a precise position for an electron, can those measurements show the precise momentum also?

© 2015 Pearson Education, Inc.

Video: https://www.youtube.com/watch?v=a8FTr2qMutA


© 2015 Pearson Education, Inc.

Uncertainty principle (continued)

Applies to uncertainties of measurements of energy E and time t. The uncertainty in knowledge of energy, ΔE , and the duration taken to measure the energy, Δt , are related by the expression:

Particles can be created from nothing—in violation of energy conservation as long as they exist for such a short time that they are not observed!

$\Delta E \cdot \Delta t \geq \hbar$

quantum fluctuations

19. If a measurement shows a precise value for the energy radiated by an electron, can that measurement show a precise time for this event as well?

- Uncertainty principle (continued)
 - Heisenberg's uncertainty principle applies only to quantum mechanics.
 - It does not apply to:
 - uncertainties of macroscopic laboratory measurements (thermometer in coffee).
 - a shield of nature's secrets.
 - the notion that science is basically uncertain.

Uncertainty Principle CHECK YOUR NEIGHBOR

To which of these does Heisenberg's uncertainty principle apply?

- A. Measuring room temperature with a thermometer
- B. Momentum and distances of a high-speed bullet
- C. A public opinion survey
- D. None of the above.

Uncertainty Principle CHECK YOUR ANSWER

To which of these does Heisenberg's uncertainty principle apply?

D. None of the above.

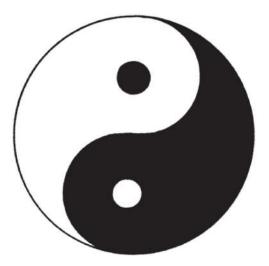
Explanation:

Heisenberg's uncertainty principle involves the unavoidable interaction between nature at the *atomic level* and the means by which we probe it.

• Complementarity:

- Quantum phenomena have *complementary* (mutually exclusive) properties:
- \rightarrow Light either acts like a wave or a particle.
- \rightarrow Matter either acts like a wave or a particle.
- \rightarrow It depends on what the experiment is measuring.

 \rightarrow But together, they form the whole picture


 \rightarrow Opposite ideas can complement one another (light can be both a wave.

© 2015 Pearson Education, Inc

The Yin-Yang diagram

The idea of complementarity is not new. Ancient Eastern cultures had it in their worldview.

Bohr chose the yin-yang diagram to illustrate complementarity. Opposites make up the whole. Both exist together. Only the union make us the whole.

Examples: Low and high, dark and light, birth and death, male and female, reason and emotion, cold and heat, wet and dry, etc.

21. What is the principle of complementarity?

22. Cite evidence that the idea of opposites as components of a wholeness preceded Bohr's principle of complementarity.

© 2015 Pearson Education, Inc.