LESSON 3

GOAL

Identify angle pairs formed by three intersecting lines.

Vocabulary

Two lines are **parallel lines** if they do not intersect and are coplanar.

Two lines are **skew lines** if they do not intersect and are not coplanar.

Two planes that do not intersect are parallel planes.

A **transversal** is a line that intersects two or more coplanar lines at different points.

When two lines are cut by a transversal, two angles are **corresponding angles** if they have corresponding positions.

When two lines are cut by a transversal, two angles are **alternate interior angles** if they lie between the two lines and on opposite sides of the transversal.

When two lines are cut by a transversal, two angles are **alternate exterior angles** if they lie outside the two lines and on opposite sides of the transversal.

When two lines are cut by a transversal, two angles are **consecutive interior angles** if they lie between the two lines and on the same side of the transversal.

Postulate 13 Parallel Postulate: If there is a line and a point not on the line, then there is exactly one line through the point parallel to the given line.

Postulate 14 Perpendicular Postulate: If there is a line and a point not on the line, then there is exactly one line through the point perpendicular to the given line.

EXAMPLE 1

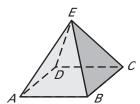
Identify relationships in space

Think of each segment in the diagram as part of a line. Which line(s) in the diagram appear to fit the description?

- **a.** Parallel to \overrightarrow{AB}
- **b.** Skew to \overrightarrow{AB}
- **c.** Parallel to \overrightarrow{BC}

Solution

- **a.** Only \overrightarrow{CD} is parallel to \overrightarrow{AB} .
- **b.** \overrightarrow{ED} and \overrightarrow{EC} are skew to \overrightarrow{AB} .
- **c.** Only \overrightarrow{AD} is parallel to \overrightarrow{BC} .

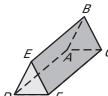


For use with pages 146–152

Exercises for Example 1

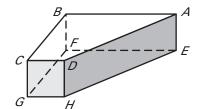
Think of each segment in the diagram as part of a line. Fill in the blank with *parallel*, *skew*, or *perpendicular*.

- **1.** \overrightarrow{DE} and \overrightarrow{CF} are $\underline{?}$.
- **2.** \overrightarrow{AD} , \overrightarrow{BE} , and \overrightarrow{CF} are $\underline{?}$.
- **3.** Plane *ABC* and plane *DEF* are __?_.
- **4.** \overrightarrow{BE} and \overrightarrow{AB} are $\underline{?}$.



Think of each segment in the diagram as part of a line. There may be more than one right answer.

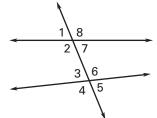
- **5.** Name a line perpendicular to \overrightarrow{HD} .
- **6.** Name a plane parallel to plane *DCH*.
- **7.** Name a line parallel to \overrightarrow{BC} .
- **8.** Name a line skew to \overrightarrow{FG} .



Identify angle relationships

Identify all pairs of angles of the given type.

- a. Corresponding
- **b.** Alternate interior
- c. Alternate exterior
- **d.** Consecutive interior



Solution

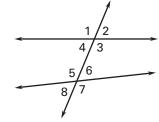
- **a.** $\angle 1$ and $\angle 3$
 - $\angle 2$ and $\angle 4$
 - $\angle 8$ and $\angle 6$ $\angle 7$ and $\angle 5$
- **b.** $\angle 2$ and $\angle 6$ $\angle 7$ and $\angle 3$
- **c.** $\angle 1$ and $\angle 5$ $\angle 8$ and $\angle 4$
- **d.** $\angle 2$ and $\angle 3$ $\angle 7$ and $\angle 6$

Sopyright © by McDougal Littell, a division of Houghton Mifflin Company

Exercises for Example 2

Complete the statement with *corresponding*, *alternate interior*, *alternate exterior*, or *consecutive interior*.

- **9.** $\angle 3$ and $\angle 5$ are $\underline{?}$ angles.
- **10.** $\angle 2$ and $\angle 6$ are $\underline{?}$ angles.
- **11.** $\angle 1$ and $\angle 7$ are $\underline{?}$ angles.
- **12.** $\angle 4$ and $\angle 5$ are $\underline{?}$ angles.



Lesson 3.1

- 1. skew 2. parallel 3. parallel
- **4.** perpendicular **5.** \overrightarrow{AD} , \overrightarrow{EH} , \overrightarrow{DC} , \overrightarrow{HG}
- **6.** plane ABE **7.** \overrightarrow{FG} **8.** \overrightarrow{AE} , \overrightarrow{DH} , \overrightarrow{AD} , \overrightarrow{DC}
- **9.** alternate interior **10.** corresponding
- **11.** alternate exterior **12.** consecutive interior

GOAL

Use angles formed by parallel lines and transversals.

Vocabulary

Postulate 15 Corresponding Angles Postulate: If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.

Theorem 3.1 Alternate Interior Angles Theorem: If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.

Theorem 3.2 Alternate Exterior Angles Theorem: If two parallel lines are cut by a transversal, then the pairs of alternate exterior angles are congruent.

Theorem 3.3 Consecutive Interior Angles Theorem: If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary.

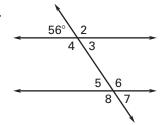
EXAMPLE 1

Identify congruent angles

The measure of three of the numbered angles is 56°. Identify the angles. *Explain* your reasoning.

Solution

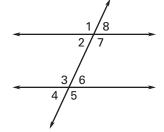
Using the Vertical Angles Congruence Theorem, $m \ge 3 = 56^\circ$. By the Corresponding Angles Postulate, $m \ge 5 = 56^\circ$. Because ≥ 3 and ≥ 7 are corresponding angles, by the Corresponding Angles Postulate, you know that $m \ge 7 = 56^\circ$.



Exercises for Example 1

Use the diagram at the right.

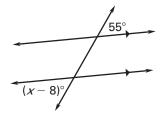
- **1.** If $m \ge 2 = 65^{\circ}$, find three other angles that have a measure of 65°. *Explain* your reasoning.
- **2.** If $m \ge 5 = 115^{\circ}$, find three other angles that have a measure of 115° . *Explain* your reasoning.



Study Guide continued For use with pages 153–160

Use properties of parallel lines **EXAMPLE 2**

Find the value of x.



Solution

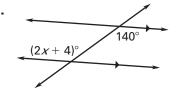
$$x - 8 = 55$$
 Alternate Exterior Angles Theorem

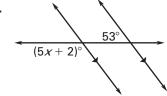
x = 63Add 8 to each side.

Exercises for Example 2

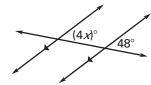
Find the value of x.

3.

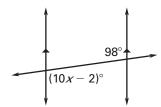




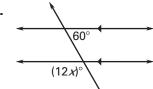
5.

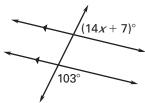


6.

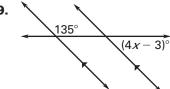


7.

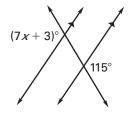




Copyright © by McDougal Littell, a division of Houghton Mifflin Company.



10.



Lesson 3.2

- **1.** Using the Vertical Angles Congruence Theorem, $m \angle 8 = 65^{\circ}$. By the Corresponding Angles Postulate, $m \angle 4 = 65^{\circ}$. Because $\angle 8$ and $\angle 6$ are corresponding angles, by the Corresponding Angles Postulate, you know that $m \angle 6 = 65^{\circ}$.
- **2.** Using the Vertical Angles Congruence Theorem, $m \angle 3 = 115^{\circ}$. By the Corresponding Angles Postulate, $m \angle 7 = 115^{\circ}$. Because $\angle 3$ and $\angle 1$ are corresponding angles, by the Corresponding Angles Postulate, you know that $m \angle 1 = 115^{\circ}$.
- **3.** 68 **4.** 25 **5.** 12 **6.** 10
- **7.** 10 **8.** 5 **9.** 12 **10.** 16

Study Guide For use with pages 161-169

GOAL

Use angle relationships to prove that lines are parallel.

Vocabulary

A proof can be written in paragraph form, called a paragraph proof.

Postulate 16 Corresponding Angles Converse: If two lines are cut by a transversal so the corresponding angles are congruent, then the lines are parallel.

Theorem 3.4 Alternate Interior Angles Converse: If two lines are cut by a transversal so the alternate interior angles are congruent, then the lines are parallel.

Theorem 3.5 Alternate Exterior Angles Converse: If two lines are cut by a transversal so the alternate exterior angles are congruent, then the lines are parallel.

Theorem 3.6 Consecutive Interior Angles Converse: If two lines are cut by a transversal so the consecutive interior angles are supplementary, then the lines are parallel.

Theorem 3.7 Transitive Property of Parallel Lines: If two lines are parallel to the same line, then they are parallel to each other.

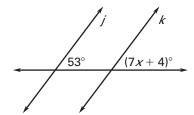
EXAMPLE 1

Apply the Corresponding Angles Converse

Find the value of x that makes $j \parallel k$.

Solution

Lines *j* and *k* are parallel if the marked corresponding angles are congruent.



$$(7x + 4)^{\circ} = 53^{\circ}$$

Use Postulate 16 to write an equation.

$$7x = 49$$

Subtract 4 from each side.

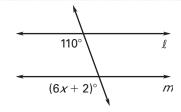
$$x = 7$$

Divide each side by 7.

The lines j and k are parallel when x = 7.

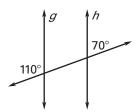
Exercises for Example 1

1. Find the value of x that makes $\ell \parallel m$.



Study Guide continued For use with pages 161–169

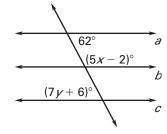
2. Is there enough information in the diagram to conclude that $g \parallel h$? *Explain*.



EXAMPLE 2 Show lines are parallel

Use the diagram at the right.

- **a.** Find the value of x that makes $a \parallel b$.
- **b.** Find the value of y that makes $a \parallel c$.



Solution

a. Lines *a* and *b* are parallel if the marked consecutive interior angles are supplementary.

$$(5x - 2)^{\circ} + 62^{\circ} = 180^{\circ}$$

Use Theorem 3.6 to write an equation.

$$5x + 60 = 180$$

Combine like terms.

$$5x = 120$$

Subtract 60 from each side.

$$x = 24$$

Divide each side by 5.

The lines a and b are parallel when x = 24.

b. Lines *a* and *c* are parallel if the marked alternate interior angles are congruent.

$$(7y + 6)^\circ = 62^\circ$$

Use Theorem 3.4 to write an equation.

$$7y = 56$$

Subtract 6 from each side.

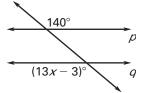
$$y = 8$$

Divide each side by 7.

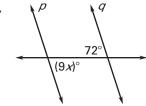
The lines a and c are parallel when y = 8.

Exercises for Example 2

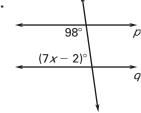
Find the value of x that makes $p \parallel q$.



4.



5.



Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

Lesson 3.3

- **1.** 18
- **2.** Yes; the angle that corresponds with 70° has a measure of 70° because it is a linear pair with the angle that measures 110° .
- **3.** 11 **4.** 8 **5.** 12

GOAL

Find and compare slopes of lines.

Vocabulary

The **slope** (m) of a nonvertical line is the ratio of vertical change (rise) to horizontal change (run) between any two points on the line.

$$m = \frac{\text{rise}}{\text{run}} = \frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Postulate 17 Slopes of Parallel Lines: In a coordinate plane, two nonvertical lines are parallel if and only if they have the same slope. Any two vertical lines are parallel.

Postulate 18 Slopes of Perpendicular Lines: In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1. Horizontal lines are perpendicular to vertical lines.

EXAMPLE 1

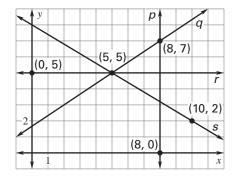
Find slopes of lines in a coordinate plane

Find the slope of line q and line r.

Solution

Slope of line
$$q$$
: $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 5}{8 - 5} = \frac{2}{3}$

Slope of line
$$r$$
: $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 5}{5 - 0} = 0$



Exercise for Example 1

1. In Example 1, find the slope of $\lim p$ and $\lim s$.

EXAMPLE 2

Identify parallel lines

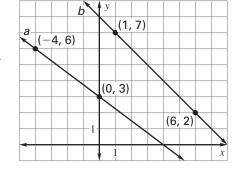
Find the slope of each line. Is $a \parallel b$? Solution

Find the slope of a through (-4, 6) and (0, 3).

$$m_a = \frac{3-6}{0-(-4)} = -\frac{3}{4}$$

Find the slope of b through (1, 7) and (6, 2).

$$m_b = \frac{2-7}{6-1} = -1$$



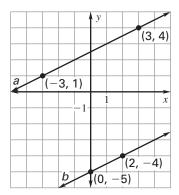
Compare the slopes. Because *a* and *b* have different slope, they are not parallel.

3.4

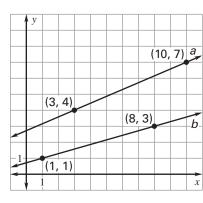
Study Guide continued For use with pages 171–179

Exercises for Example 2

Find the slope of each line. Is $a \parallel b$?



3.



Line k passes through (-1, -4) and (3, 6). Graph the line perpendicular to k that passes through the point (-4, 3).

Solution

STEP 1 Find the slope m_1 of line k through (-1, -4) and (3, 6).

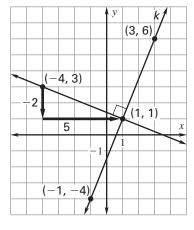
$$m_1 = \frac{6 - (-4)}{3 - (-1)} = \frac{10}{4} = \frac{5}{2}$$

STEP 2 Find the slope m_2 of a line perpendicular to k. Use the fact that the product of the slopes of two perpendicular lines is -1.

$$\frac{5}{2} \bullet m_2 = -1$$

$$m_2 = -\frac{2}{5}$$

STEP 3 Use the rise and run to graph the line.

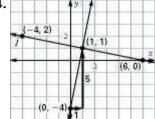


Exercises for Example 3

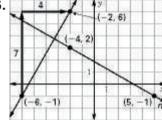
- **4.** Line *j* passes through (-4, 2) and (6, 0). Graph the line perpendicular to *j* that passes through the point (0, -4).
- **5.** Line *n* passes through (-2, 3) and (5, -1). Graph the line perpendicular to *n* that passes through the point (-6, -1).

Lesson 3.4

- **1.** undefined, $-\frac{3}{5}$ **2.** $m_a = \frac{1}{2}$, $m_b = \frac{1}{2}$; parallel
- **3.** $m_a = \frac{3}{7}$, $m_b = \frac{2}{7}$; not parallel



5.



Study Guide For use with pages 180-187

GOAL

Find equations of lines.

Vocabulary

The general form of a linear equation in **slope-intercept form** is y = mx + b, where m is the slope and b is the y-intercept.

A linear equation written as Ax + By = C, where A and B are not both zero, is written in standard form.

EXAMPLE 1

Write an equation of a parallel line

Write an equation of the line passing through the point (3, 4) that is parallel to the line with the equation v = -4x + 5.

STEP 1 Find the slope m. The slope of a line parallel to y = -4x + 5 is the same as the given line, so the slope is -4.

STEP 2 Find the y-intercept b by using m = -4 and (x, y) = (3, 4).

$$y = mx + b$$

y = mx + b Use slope-intercept form.

$$4 = -4(3) + 6$$

4 = -4(3) + b Substitute for x, y, and m.

$$16 = b$$

Solve for *b*.

Because m = -4 and b = 16, an equation of the line is y = -4x + 16.

EXAMPLE 2

Write an equation of a perpendicular line

Write an equation of the line p passing through the point (6, -3) that is perpendicular to the line q with the equation y = 4x - 7.

STEP 1 Find the slope m of line p. Line q has a slope of 4.

$$4 \cdot m = -1$$

The product of the slopes of \perp lines is -1.

$$m = -\frac{1}{4}$$

 $m = -\frac{1}{4}$ Divide each side by -2.

STEP 2 Find the y-intercept b by using $m = -\frac{1}{4}$ and (x, y) = (8, -3).

$$y = mx + t$$

y = mx + b Use slope-intercept form.

$$-3 = -\frac{1}{4}(8) + t$$

 $-3 = -\frac{1}{4}(8) + b$ Substitute for x, y, and m.

$$-1 = b$$

Solve for *b*.

Because
$$m = -\frac{1}{4}$$
 and $b = -1$, an equation of line p is $y = -\frac{1}{4}x - 1$.

Chapter 3 Resource Book

Study Guide continued

For use with pages 180-187

Exercises for Examples 1 and 2

Write an equation of the line that passes through point P and is parallel to the line with the given equation.

1.
$$P(10, 3), y = x - 12$$

1.
$$P(10, 3), y = x - 12$$
 2. $P(-5, 2), y = -x - 9$ **3.** $P(-1, 2), y = \frac{2}{3}x - 2$

3.
$$P(-1,2), y = \frac{2}{3}x - 2$$

Write an equation of the line that passes through point P and is perpendicular to the line with the given equation.

4.
$$P(8,7), y = -x + 3$$

4.
$$P(8,7), y = -x + 3$$
 5. $P(-4,5), y = 2x - 6$ **6.** $P(2,-3), y = \frac{4}{7}x + 2$

6.
$$P(2, -3), y = \frac{4}{7}x + 2$$

EXAMPLE 3

Graph a line with equation in standard form

Graph
$$2x + 3y = 18$$
.

Solution

STEP 1 Find the intercepts.

To find the *x*-intercept, let y = 0.

$$2x + 3y = 18$$

$$2x + 3(0) = 18$$

$$x = 9$$

To find the *y*-intercept, let x = 0.

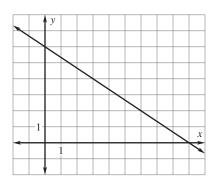
$$2x + 3y = 18$$

$$2(0) + 3y = 18$$

$$y = 6$$

STEP 2 Graph the line.

The line intercepts the axes at (9, 0)and (0, 6). Graph these points, then draw a line through the points.



Exercises for Example 3

Graph the equation.

7.
$$5x + 2y = 20$$

8.
$$x - 6y = 12$$

7.
$$5x + 2y = 20$$
 8. $x - 6y = 12$ **9.** $7x + 5y = -14$

Lesson 3.5

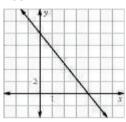
Study Guide

1.
$$y = x - 7$$
 2. $y = -x - 3$ **3.** $y = \frac{2}{3}x + \frac{8}{3}$

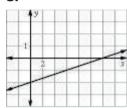
4.
$$y = x - 1$$
 5. $y = -\frac{1}{2}x + 3$

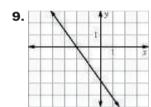
6.
$$y = -\frac{7}{4}x + \frac{1}{2}$$

7.



8.





GOAL

Find the distance between a point and a line.

Vocabulary

The **distance from a point to a line** is the length of the perpendicular segment from the point to the line.

Theorem 3.8: If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular.

Theorem 3.9: If two lines are perpendicular, then they intersect to form four right angles.

Theorem 3.10: If two sides of two adjacent acute angles are perpendicular, then the angles are complementary.

Theorem 3.11 Perpendicular Transversal Theorem: If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other.

Theorem 3.12 Lines Perpendicular to a Transversal Theorem: In a plane, if two lines are perpendicular to the same line, then they are parallel to each other.

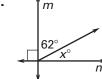
EXAMPLE 1

Application of the Theorems

Find the value of x.

a.

b.



Solution

- **a.** x = 90, by Theorem 3.9, because k and ℓ are perpendicular, all four angles formed are right angles. By definition of a right angle, x = 90.
- **b.** By Theorem 3.9, because m and n are perpendicular, all four angles formed are right angles. By Theorem 3.2, the 62° angle and the x° angle are complementary. Thus x + 62 = 90, so x = 28.

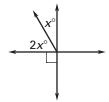
Exercises for Example 1

Find the value of x.

1.

2.

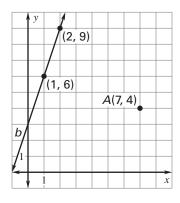
3.



Study Guide continued For use with pages 190–197

EXAMPLE 2 Find the distance between a point and a line

What is the distance from point A to line b?



Solution

You need to find the slope of line b. Using the points (1, 6) and (2, 9), the slope of the line is

$$m = \frac{9-6}{2-1} = 3.$$

The distance from point A to line b is the perpendicular segment from the point to the line. The slope of a perpendicular segment from point A to line b is $-\frac{1}{3}$. The segment from (1, 6) to (7, 4) has a slope of $-\frac{1}{3}$.

Find the distance between these points.

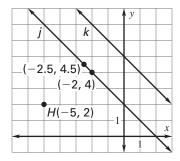
$$d = \sqrt{(1-7)^2 + (6-4)^2} \approx 6.3$$

The distance from point A to line b is about 6.3 units.

Exercises for Example 2

Use the graph at the right.

- **4.** What is the distance from point H to line j?
- **5.** What is the distance from line j to line k?



Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

Lesson 3.6

- **1.** 45 **2.** 90 **3.** 30 **4.** about 3.5 units
- **5.** about 2.1 units