Chapter 2: The Next Step... Conditional Probability STATISTICS

Vocabulary

Common Vocabulary

- Event: something that occurs or happens with one or more possible outcomes
- Experiment: process of taking a measurement or making an observation
- Simple Event: simplest outcome of an experiment
- Sample Space: the set of all possible events or outcomes of an experiment

Common Vocabulary

Output: Sector of the secto

Intersection: when two events occur in a single performance of an experiment; an 'and' relationship

Complement: all the outcomes in the sample space that are not in a given event

Vocabulary

Given the probability experiment we did on Friday, define the given terms in the context of the experiment:

- Event:
- Experiment:
- Simple Event:
- Sample Space:
- Union:
- Intersection:
- Complement:

Complement of an Event

Denoted as P(A'), complement of A
Complement is anything that is not A
P(A) + P(A') = 1
P(A') = 1 - P(A)

Finding the Complement

- I have Starbursts in a bag. 12 are orange, 3 are yellow, 9 are pink, and 7 are red.
 - What is the probability that I don't pick a red Starburst?
 - What is the probability that I don't pick an orange or yellow Starburst?

Probabilities

From your results of the experiment, determine the following:

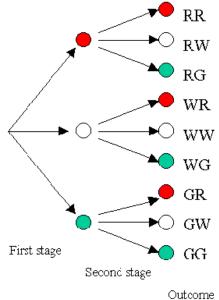
- The probability that neither die rolled a 1.
- The probability that both die rolled the same number.
- The probability that both die rolled different numbers.
- The probability that the sum of the two dice was less than 9.
- The probability that the sum of the two dice was greater than 5.

What are Tree Diagrams?

What is a tree diagram?

A tree diagram is another way to show the outcomes of simple probability events.

 Each outcome is represented as a branch on a tree.



Tree Diagrams

Where have you seen a tree diagram before?

• What was its purpose?

Was it helpful to what you were doing?

Tree Diagrams

Let's create a tree diagram for flipping a FAIR coin three times.

- What is the probability that all the outcomes will be heads?
- What is the probability that at least two of the outcomes will be heads? (order doesn't matter)

Example

Irvin opens up his sock drawer to get a pair of socks to wear to school. He looks in the sock drawer and sees 4 red socks, 8 white socks, and 6 brown socks. Irvin reaches in the drawer and pulls out a red sock. He is wearing blue shorts so he replaces it. He then draws out a white sock. What is the probability that Irvin pulls out a red sock, replaces it, and then pulls out a white sock?

Tree Diagrams

What would a tree diagram look like for the experiment we did on Friday?

• Would you want to create that diagram?

Importance

What are some advantages of creating a tree diagram for a probability event?

Why would creating a tree be useful?
 What are some disadvantages of creating a tree diagram for a probability event?

Order and Probability

Review Worksheet

- Look at the worksheet you were given previously.
- Output test in test
 - What method did you use to find these possibilities?
- One of the second se
 - What method did you use to find all these possibilities?

Permutation vs. Combination

Permutation is the number of possible arrangements in an ordered set of objects.

- Order matters
 - The combination to the safe was 472. We care about the order because 247 wouldn't work.
- Combinations are arrangements of objects without regard to order and without repetition
 - Order doesn't matter

 My fruit salad is a combination of apples, grapes, and bananas. It doesn't matter the order we say it, we could also say grapes, bananas, and apples.

Output think of other examples?

Permutation or Combination

Selecting three students to attend a conference in Washington D.C.

- Combination
- Selecting a lead and an understudy for a school play.
 - Permutation
- Assigning students to their seats on the first day of school.
 - Permutation

Fundamental Counting Principle

The <u>Fundamental Counting Principle</u> states that if an event can be chosen in *p* different ways and another independent event can be chosen in *q* different ways, the number of different ways the 2 events can occur is *p* x *q*.

• Example:

 You have 2 pairs of pants and 4 shirts. How many different outfits can you make?

Permutations

Permutations (order matters)

OPermutations without repetition

Places in a race; you can't be first and second

OPERMUTATIONS with repetition

 Choosing a combination for a lock or phone number; you can use the same number each time

With or Without Repetition

Now many different arrangements for the letters in the word "MATHEMATICS"?

- One of the second se
- Output the letters in the word "LUNCH"?

Notation for Permutations Without Repetition

- N is the total number of objects
- R is the number of objects chosen
- When n = r then, nPr = n!
 - ! means to multiply a series of descending natural numbers

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Example

Output to the second second

• With repetition or without repetition?

More Examples

- Solve
 - 4 P 4
 - 6 P 3
 - What is the total number of possible 4-letter arrangements of the letters 's', 'n', 'o', and 'w' if each letter is used only once?
 - A committee is to be formed with a president, vice president, and a treasurer. If there are ten people to select from how many committees are possible?

Notation for Permutations With Repetition

- This is used when there are double objects or repetitions in a permutation problem.
- N is the number of objects
- R is the number of objects chosen
- X is the number of times a letter is repeated

X1:X2!

Example

O How many ways can we arrange the letters in the word "TOOTH?"

More Examples

Output test in test

 How many different 6-digit numerals can be written using the following 7 digits? Assume the repeated digits are all used.
 3,3,4,4,4,5,6

More Examples

O How many ways can you arrange the letters of the word "loose"?

60 ways

O How many ways can you arrange the letters in the word "appearing"?

90,720 ways

O How many ways can you arrange the letters in the word "Mississippi"?

• 34,650 ways

Quick Review

Which of these are with and without repetition?

- Arranging the letters of the word "ALGORITHM"?
- Arranging the letters of the word "TOOTHFAIRIES"

 Calculate the number of ways to arrange the letters in both questions above.

- 362,880 ways
- 59,875,200 ways

Combinations

Combinations (order doesn't matter)

Combinations without repetition

- No repetition allowed
 - Example: numbers in a lottery ticket

Combinations with repetition

- Repetition allowed
 - Example: type of coins in your pocket

Notation for Combinations Without Repetition

n!

r!(n-r)!

N is the number of objects taken
R is the number of objects chosen

In how many ways can 3 desserts be chosen in any order from a menu of 10?

More Examples

There are 12 boys and 14 girls in Ms. Peacock's math class. Find the number of ways that Ms. Peacock can select a team of 3 students from the class to work on a group project. The team must consist of 2 boys and 1 girl.

1,092 ways

From a list of 8 books, how many groups of 3 books can be selected?

If there are 20 rock songs and 20 rap songs to choose from, in how many different ways can you select 12 rock songs and 7 rap songs for a mixed CD?

9.765 x 10 ^ 9 ways

From a group of 10 men and 12 women, how many committees of 3 men and 3 women can be formed?

• 26,400 ways

Conditional Probability

What is it?

Conditional Probability is a probability calculation where the probability of a second event is affected by the probability of the first.

Ocan you think of some examples?

Notation

The probability of event A occurring, given that event B has occurred.

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B|A) = P(A \cap B) / P(A)$$

$$P(A|B) = P(A \cap B) / P(B)$$

$$P(A \cap B) = P(B|A) P(A) = P(A|B) P(B)$$

$$P(first and second event)$$

P(first event)

Example

In a recent election, 35% of the voters were democrats and 65% were not. Of the democrats, 75% voted for candidate Z and of the non-Democrats, 15% voted for candidate Z. Assume A = voter is Democrat; B = voted for candidate Z. Answer the following:

Find P(B/A), P(B/Ac)

Find P(A n B), explain its representation

Find P(Ac n B), explain its representation

• Find P(B)

Example Find P(B/A), P(B/Ac) .75

Find P(A n B), explain its representation

 P(B/A) * P(A) = .75(.35) = .26; that is the probability of being a democrat and voting for candidate Z

• Find P(Ac n B), explain its representation

 P(B/Ac) * P(Ac) = .15(.65) = .0975; that is the probability of not being a democrat and voting for candidate Z.

• Find P(B)

P(A n B) + P(Ac n B) = .26 + .0975 = .36

Example IF P(A) = .3, P(B) = .7, and P(A n B) = .15 Find P(A/B). Find P(B/A).

At Dunkerton High School, 90% of the students take Chemistry and 35% of the students take both physics and chemistry. What is the probability that a student from Dunkerton who is taking Chemistry is also taking physics?

• Assume two fair coins are tossed.

- List all the possible outcomes in the sample space.
- Suppose the two events are defined as follows:
 - A: At least one head appears
 - B: Only one head appears

• Find the probabilities:

P(A), P(B), P (A n B), P(A/B), P(B/A)

Create your own experiment

You are going to create your own experiment of conditional probability:

- EXAMPLE:
 - Would you rather have ice cream or a candy bar? If you would rather have ice cream, would you want white or chocolate? IF you would rather have a candy bar, would you rather have a Snickers or a Twix?