Lecture Outline

Chapter 19: Vibrations And Waves

Part 3 Doppler Effect Shock Waves

Doppler Effect: Intro

Bug jumps up and down on a pond

Wavefronts move out in concentric circles that are centered on the bug A and B observe waves at the same frequency Bug jumps up and down while moving to the right

Circles are centered on previous position of bug. B observes waves at a higher frequency than A The **Doppler Effect** is a change in the observed frequency of a wave caused by relative motion between the source and an observer.

Ambulance driver hears a constant frequency.

Wave *speed* is the same for A and B (same medium). Same effect if source is at rest and observers move.

20. In the Doppler effect, does frequency change? Does wave speed change?

The speed of the source affects the observed frequency:

The greater the source speed...

... the more the frequency shifts.

Result: Measure frequency shift to find speed

- The Doppler effect also applies to *light*: Increase in light frequency when light source approaches you → blue shift
 - Decrease in light frequency when light source moves away from you n \rightarrow red shift

Which observer measure a light wave that is faster?

21. Can the Doppler effect be observed with longitudinal waves, with transverse waves, or with both?

22. What is meant by a blue shift and a red shift for light?

© 2015 Pearson Education, Inc.

Most galaxies have a red shift

Pass starlight through a prism. Its spectrum has dark lines.

If a galaxy (with its stars) are moving, the dark lines are shifted: blue shift: galaxy moving towards us red shift: galaxy moving away

Most galaxies moving away Universe must be expanding

Star light, star

A star's speed can tell us if there is a planet orbiting it A star's spin speed can be determined by measurement of frequency shift

Doppler radar: Weather prediction Radar: echo to tell how far away storm is Doppler radar: tells how fast storm is moving

Doppler radar with tornadoes

Tornado winds are moving towards Nexrad from A, and away from Nexrad at B.

Wave from A: blue shifted Wave from B: red shifted.

More shift \rightarrow faster speed

You can tell is a tornado is forming:

© 2015 Pearson Education, Inc.

Traffic enforcement and radar

Radar gun sends out wave. Frequency of returning wave (echo) is shifted.

More shift \rightarrow faster speed

© 2015 Pearson Education, Inc.

The Doppler Effect CHECK YOUR NEIGHBOR

The Doppler effect occurs for

- A. sound.
- B. light.
- C. Both A and B.
- D. Neither A nor B.

The Doppler Effect CHECK YOUR ANSWER

The Doppler effect occurs for

C. Both A and B.

Explanation:

The Doppler effect occurs for both sound and light. Astronomers measure the spin rates of stars by the Doppler effect.

Bow Waves

- Wave barrier
 - Waves superimpose (overlap) directly on top of one another producing a "wall".

bug swimming as fast as the wave it makes bug swimming faster than the wave it makes

- Bow wave
 - V-shape form of overlapping waves when object travels faster than wave speed.
 - An increase in speed will produce a narrower
 V-shape of overlapping waves.

bow waves

narrower= faster

23. How fast must a bug swim to keep up with the waves it produces? How fast must it move to produce a bow wave?

Skip 24 for now.

25. How does the V shape of a bow wave depend on the speed of the source?

Wake up!

A *wake* is the wave pattern produced as a boat moves through water:

© 2015 Pearson Education, Inc.

A *bow wave* is produced when many waves overlap. Because it is on the water surface, it is (mostly) 2-dimensional.

Bow Waves, Continued

- Supersonic
 - Aircraft flying faster than the speed of sound (Mach 1).
 - Difficult to control plane as it passes sound barrier
 - Easier afterwards because air is smoother

24. How fast does a supersonic aircraft fly compared with the speed of sound?

Shock Waves

- Shock wave
 - Pattern of overlapping spheres that form a cone from objects traveling faster than the speed of sound.

© 2015 Pearson Education, Inc.

26. A bow wave on the surface of water is two-dimensional. How about a shock wave in air?

- Shock wave (continued)
 - Consists of two cones:
 - a high-pressure cone generated at the bow of the supersonic aircraft
 - a low-pressure cone that follows toward (or at) the tail of the aircraft

The air pressure changes are similar to the expansion of air during an explosion

A *sonic boom* is the sharp cracking sound heard by observes on the ground as a supersonic aircraft flies past.

The shock wave cone is continuously dragged behind the plane.

Which person has already heard it?

Which hasn't?

27. True or false: A sonic boom occurs only when an aircraft is breaking through the sound barrier. Defend your answer.

Sonic boom

- It is not required that a moving source be noisy.
- Example:
- Crack of circus whip

The whip is not the source of the noise. It produces the sound by generating shock waves. A supersonic bullet is traveling faster than Mach 1 (the speed of sound).

 \rightarrow It drags shock wave cone behind it, creating a noise.

7.5mm Swiss Rifle Bullet at Four (4) Velocities

28. True or false: In order for an object to produce a sonic boom, it must be "noisy." Give two examples to support your answer.