Chapter 19 – Stars, Galaxies, and the Universe

Section 1

Objectives

- **Describe** how color indicates the temperature of a star
- Explain how a scientist can identify a star's composition
- **Describe** how scientists classify stars.
- Compare absolute magnitude with apparent magnitude.
- Identify how astronomers measure distances from Earth to stars.
- **Describe** the difference between the apparent motion and the actual motion of stars.

Color (Because a flame is hotter than a yellow or red flame, we can conclude that blue are hotter than yellow or red stars.			
Compo	A star is made of different in the form of			
	If the form of			
•	The gases in the atmosphere of a star different wavelengths of light depending on which elements make up the gases.			
•	The from a star indicates which elements make up that star.			
•	The Colors of Light A breaks white light into a rainbow of colors called a			
•	An instrument called a spectrograph is used to break a star's light into a spectrum. The spectrum of a star			
	will vary depending on which are present.			
•	Making an ID Emission lines are lines made when certain wavelengths, of light, or colors, are			
	by hot gasses.			
•	Each element produces a unique set of lines, which allows them to be used to identify the elements in a star.			
• Trapping the Light—Cosmic Detective Work A star's spectrum is made of dark emission line				
	atmosphere certain colors of light, which causes lines to appear.			
•	Identifying Elements Using Dark Lines Because a star's atmosphere absorbs some colors of light, the spectrum of a star is called an <i>absorption spectrum</i> . It can be used to identify some of the elements in a star's atmosphere.			
Classif	ying Stars Differences in Temperature Stars are now classified by how they are.			
•	Differences in Brightness The brightest star,, has a magnitude of -1.4. The dimmest star that can be seen with a microscope has a magnitude of			
How B	right Is That Star?			
•	Apparent Magnitude The of a light or star is called apparent magnitude.			
•	Absolute Magnitude Absolute magnitude is the brightness of a star.			

Dista	nce to the Stars					
•	• Because stars are so far away, astronomers use to measure the distances from Earth to stars. A light year is the distance that light travels in a year.					
•	Parallax is the apparent in the position of an object when viewed from different Measuring parallax enables scientists to calculate the distance between a star and the Earth.					
Motic	ons of Stars					
•						
•	The Actual Motion of Stars The apparent motion of the sun and stars in our sky is due to					
	But each star is also moving in space. Their actual movements, however, are					
	to see.					
Sec	tion 2					
•	ectives					
	Describe different types of stars. Describe the quantities that are plotted in the H-R diagram.					
	Explain how stars at different stages in their life cycle appear on the H-R diagram.					
The I	Beginning and End of Stars					
•	The Beginning A star enters the first stage of its life cycle as a ball of and dust					
	pulls the gas and dust together, and hydrogen changes to in a processes called <i>nuclear</i>					
	puns the gas and dust together, and hydrogen changes to in a processes cance nucleur					
	·					
•	The End Stars usually lose material slowly, but sometimes they can lose material in a big					
	Much of a star's material returns to space, where it sometimes forms					
Diffe	rent Types of Stars					
•	Stars can be classified by their, mass, brightness, color, temperature, spectrum, and age. A star's					
	can change as it ages.					
•	Main-Sequence Stars After a star forms it enters the second and longest stage of its life cycle known as the					
	Energy is generated in the core as hydrogen atoms fuse into helium atoms.					
•	Giants and Supergiants After the main-sequence stage, a star can enter the third stage of its life cycle. A					
	, as it is know known, is a large, reddish star late in its life cycle.					
•	In this third stage, a star can become a red giant. As the center of the star, the atmosphere of					
	the star grows very and cools to form a red giant or a red supergiant.					

• The H-R Diagra	m the H ertzprung- R ussell diagram	m is a graph that shows th	ne relationship between a star's
surface	and absolute	·	
• Reading the H-R	R Diagram The diagonal pattern of	on the H-R diagram wher	e most stars lie is called the
	Find the diagonal patt	ern in the H-R Diagram o	on the next two slides.
When Stars Get Old			
• Supernovas A su	upernova is a gigantic	in which	a massive blue star collapses.
• Neutron Stars a	and Pulsars A star that has collap	sed under gravity to the p	point at which all of its particles
are	_ is called a neutron star . If a ne	eutron star is	, it is called a pulsar .
• Black Holes Som	netimes the leftovers of a superno	va are so massive that the	ey to
form a black hole gravity.	. A black hole is an object that is	s so massive that even	cannot escape its
Section 3			
Objectives			
• Identify three typ	bes of galaxies.		
• • •	ntents and characteristics of galaxi	ies.	
	oking at distant galaxies reveals w		d like.
Galaxies			
• A galaxy is a coll	lection of, dust, and gas	held together by	·
• Spiral Galaxies h	nave a bulge at the center and	arms.	
•The Milky Way A	Astronomers think that	solar system is in a spiral	galaxy.
•Elliptical Galaxie are called elliptical	s About of all g l galaxies.	galaxies are simply mass:	ive of stars. These
• Irregular Galaxi	es Galaxies that do not fit into any	y other class are called _	galaxies.
Contents of Galaxies • Gas Clouds A lar	ge clouds of gas and dust in inter	stellar space is called a _	
•Star Clusters A _ million stars.	is a tight	group of stars that looks	like a ball and contains up to 1
• An open cluster i	s a group of stars that are	together relative to	surrounding stars.
Origin of the Galaxies			
_	ight to travel through	space, looking at distant	galaxies reveals what
-	, starlike object tha	t generates energy at a	is called a

_	uasar. Some scientists think that qorming.	uasars may be the	of young galaxies that a	re in the process of
Secti				
Objec				
	Describe the big bang theory.	lea lei a lean a theann.		
	Explain evidence used to support t			
	Describe the structure of the unive		_	
	Describe two ways scientists calcu Explain what will happen if the un	•	2 .	
Cosmo	cosmology is the study of the	proporties pro	cassas, and avalution of the	
•	Cosmology is the study of the	, properties, pro	cesses, and evolution of the _	··
Univer	rsal Expansion Galaxy Movement To understa galaxies.	and how the universe	, scientists study the	he movement of
•	A Raisin-Bread Model The uni	verse like the rising raisin	bread dough is	Think of
	A Raisii-Breau Woder The uni	verse, fixe the fishig faish	orcad dough, is	Tillink Of
	the raisins in the dough as galaxi	es. As the universe expand	s, the galaxies move	·
The Bi	Ig Bang Theory A Tremendous Explosion The t called the big bang theory.	heory that the universe beg	gan with a tremendous	is
•	Cosmic Background Radiation	In, two scientist	s using a huge	accidentally
	found radiation coming from	ir	space. One explanation for the	his radiation is that
	it is cosmic	radiation left over from the	e big bang.	
How C	Old Is the Universe? Age of the Universe Scientist us	e to methods to study the _	of the universe.	
•	By measuring the	between Earth and var	rious galaxies, scientists can p	redict the rate of
	and calculate	the age of the universe.		
•	Because the universe must at lea provide a clue to the age of the u		it contains, the	ages of the stars
A Fore	ever Expanding Universe			
•	The expansion of the universe de	epends on the amount of	it contains. A larg	ge enough quantity
	of matter would cause	to stop the expansi	ion. The universe could start of	collapsing.
•	Scientist now think that there ma	ay not be	matter in the universe, so th	e universe would
	continue to expand	and become cold and d	lark as all the stars	