Chapter 18 "Acids, Bases and Salts"

• Some familiar chemistry....

Chapt. 18 OBJECTIVES

- State and use the Arrhenius and Brønsted-Lowry definitions of acids and bases.
- Identify common physical and chemical properties of acids and bases.
- Describe dissociation constants and explain what they indicate about acids and bases.
- Use experimental data to determine dissociation constants.
- Explain what most 'acidic hydrogen atoms' have in common.
- Explain wghat most bases have in common.
- Describe nomenclature of acids and bases.

18-1 Defining Acids and Bases

- What are some properties of acids and bases? (Let's derive some.)
 - Taste (Don't do this at home!)
 - Touch (Or this!)
 - Reactions with metals
 - Electrical conductivity
 - Reactions with "Indicators"
 - Neutralization

The Arrhenius Definitions

- Acid a substance that dissociates in water to produce hydrogen ions (H⁺).
- Base a substance that dissociates in water to produce hydroxide ions (OH⁻).
- See Fig. 18-6 (page 599).
- Arrhenius acids and bases react together (*neutralize*) to form a salt and water.
- Examples

The Brønsted-Lowry Definiton

- Arrhenius definition is restrictive
 Applies only to water solutions.
 - Does not explain why covalent molecules are acids (HCI, HBr)
 - Does not explain why certain compounds like NH₃ are bases.
- Brønsted-Lowry Definitions
 - Acid: a proton (H⁺) donor.
 - Base: a proton acceptor.

The Hydronium Ion

- Protons (H⁺) do not really exist in water solutions in this way.
- Hydronium Ions (H₃O⁺) are a better approximation of what occurs.

Conjugate Acid-Base Pairs

- The difference between an acid and a base may be as simple as one H⁺ ion!
- To emphasize this relationship, chemists use the terms 'conjugate acid – conjugate base' pairs.
 - The term "conjugate" means "joined together."
- Conjugate Acid-Base Pair is two compounds that differ by only one H⁺ ion.
- Examples (Fig. 18-12, page 603).

18-2 Determining The Strengths of Acids and Bases

- Strong and Weak Acids
 - Strong acids easily lose H⁺ ions, so they are strong electrolytes (high degree of dissociation).
 - Weak acids do not dissociate very much.
- Strong and Weak Bases
 - Strong bases (such as compounds with OH⁻) have high affinity for H⁺ ions, and they are strong electrolytes.
 - Weak bases react partially with water to form hydroxide ions.
- Use single arrows (→) to signify strong acids (~100% dissociation). (HCI)
- Use double arrows (↔) to signify weak acids (low amount of dissociation). (HC₂H₃O₂)
- Strength of Conjugate Acid-Base Pairs
 - The stronger the acid, the weaker its conjugate base.
 - The stronger the base, the weaker its conjugate acid.

The Acid Dissociation Constant

- For the reaction HA (aq) + H₂O (l) ↔ H₃O⁺ (aq) + A⁻ (aq) we may write an equilibrium expression:
 K_{eq} = [H₃O⁺][A⁻] / [HA][H₂O]
 or
- $K_a = [H_3O^+][A^-] / [HA]$ (Why?)

where K_a is the acid dissociation constant.

The larger the K_a, the stronger the acid. Example

The Base Dissociation Constant

 For the reaction B (aq) + H₂O (l) ↔ HB⁺ (aq) + OH⁻ (aq) we may write an equilibrium expression: K_{eq} = [HB⁺][OH⁻] / [B][H₂O]
 or
 K_b = [HB⁺][OH⁻] / [B] (Why?)

where K_b is the base dissociation constant.

The larger the K_b, the stronger the base. Example

Calculating Dissociation Constants

- This is a very easy task once the concentrations of ions are known.
- Sample problem (p612).

Acid-Base Properties of Salts

• Salts are strong electrolytes, forming cations and anions in water.

 Many of these ions are weak Brønsted-Lowry acids or bases, so they produce H⁺ or OH⁻.

• This is called a 'salt hydrolysis reaction.'

Types of Salt Hydrolysis Reactions

- Salts of Strong Acids & Strong Bases
 - Solution is neutral.
- Salts of Strong Acid & Weak Bases
 Solution is acidic.
- Salts of Weak Acids & Strong Bases

 Solution is basic (alkaline).
- Salts of Weak Acids & Weak Bases
 - Not easily predicted due to the many complex equilibria involved.

18-3 Naming and Identifying Acids and Bases

- Acids have "acidic hydrogens."
 - These have a slight positive charge while still part of the molecule.
 - Binary Acids
 - Oxy Acids
 - Carboxylic Acids
- Bases
 - These always contain an unshared pair of electrons.
 - Anions
 - Amines
- Nomenclature (See p619 and prior notes.)

Chapt. 18 OBJECTIVES

- State and use the Arrhenius and Brønsted-Lowry definitions of acids and bases.
- Identify common physical and chemical properties of acids and bases.
- Describe dissociation constants and explain what they indicate about acids and bases.
- Use experimental data to determine dissociation constants.
- Explain what most 'acidic hydrogen atoms' have in common.
- Explain what most bases have in common.
- Describe nomenclature of acids and bases.