14-2 Notes Lenses

Lenses

- Like mirrors, lenses form images, but lenses do so by refraction rather than reflection.
- Examples include, magnifying glasses, contact lenses, microscope, telescope.

2 Types of Lenses

- Converging lenses

 Thicker at the middle and thinner at edges
- Diverging lenses Thinner at the middle and thicker at the edges

Draw Image Created by Converging Lenses

Examples of Converging

- Magnifying Glasses
- Microscope Work by using several converging lenses to focus light
- Far sightedness (Glasses)

Examples of Diverging

- Telescopes Work by using several Diverging lenses to focus light
- Near sightedness (Glasses)

Draw Image Created by Diverging Lenses

- Real image an image formed when rays of light actually intersect at a single point.
- Real image is a clear crisp image that is formed.
- Image location can be predicted with the mirror equation
- 1 / p + 1 / q = 1 / f
- 1/p+1/q=2/R
- p = object distance; q = image distance
- f = focal length; R = Radius

- Unlike flat mirrors, the images formed are not the same size as the original image.
- How big or small they appear can be calculated:
- M = h' / h
- M = q / p
- M = Magnification; h' = image height
- h = object height; q = image distance
- p = object distance

If M is + then the image is Upright and Virtual.

If M is – then the image is Inverted and Real

 An object is placed at 30 cm in front of a converging lens. The focal length of the lens is 10 cm. Find the image distance and the Magnification. Is it real or virtual?

Total Internal Reflection

 Total Internal Reflection can occur when light moves along a path from a medium with a higher index of refraction to one with a lower index of

 Critical Angle
 At some particular angle of incidence, called the critical angle, the refracted ray moves parallel to the boundary, making the angle of refraction equal to a 90

degree angle.

Critical Angle Equation

- Sine of Critical Angle = index of refraction of 2nd medium / index of refraction of 1st medium
- Sinθ_c = Index of Refract 1 / Index of Refract 2

Find the critical angle for a water-air boundary if the index of refraction of water is 1.5 and the index of refraction for air is 1.00.