
Chapter 13 Practice Directions

1. Using your Windows button menu, find and launch your IDLE program.

IDLE is the integrated development environment associated with Python. It is made up

of a code editor where you type your code along with other helpful tools that allow you to

write, save, and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic

debugging tips to programmers if there are problems with their code.

2. Your IDLE window should look something like this once it has launched.:

On Startup, IDLE will display the Python Shell, which can be used to give commands to

the computer’s operating system. Since we are viewing the shell through IDLE and not

the actual command prompt window, the commands that we type into the Shell will not

communicate directly with our operating system. However, you can type similar

commands in the Python Shell directly from the Python program (not through IDLE) and,

if you have permission to access the operating system’s commands, you can

communicate with the computer’s operating system that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do,

like writing code for our game or debugging a file.

3. Go to File > Open and then browse to find your VampirePizzaAttack file that we created

and open it.

4. Your Python file and code from last chapter will open up.

5. We will now begin to code the next part of our game. I like to make my coding window

larger so that I can see all of my code a bit better, but that is a personal decision.

Remember as we move through these exercises that your spelling, capitalization, and

indentation should match. If it doesn’t, your program likely won’t work.

6. Click at the end of Line 34, as shown in the screenshot below.

7. Press ENTER.

8. Type the code you see on Lines 35 – 36 of the screenshot below.

Line 35 creates a constant variable called MAX_BAD_REVIEWS. The variable’s value is

set to 3.

Line 36 creates another constant variable called WIN_TIME. This variable will represent

the number of frames the game runs through before the time runs out. We want to start

out with our game running for 3 minutes. The variable’s value is set to be the value of

the FRAMERATE variable (currently set to 60), times 60, times 3. Remember the

framerate is how many frames are generated per second. So, 60 frames per second

times 60 is 3,600 frames. This is the number of times the game loop runs in one minute.

Multiple 3,600 by 3 and you get 10,800 frames, which is the number of times the game

loop runs in three minutes.

If you want to change the time on the clock later on, just change the number 3 to the

number of minutes that you want the game to last.

9. Click at the end of Line 96, as shown in the screenshot below.

10. Press ENTER.

11. Type the code you see on Lines 97 – 98 of the screenshot below. Ensure your

indentation matches the indentation shown in the screenshot.

Line 97 creates another “if” function that will check to see if the x-coordinate of the

Vampire Sprite class object is less than or equal to 100. If it is, that means that the

vampire sprite has reached the end of the grid and has eaten or destroyed a pizza of

yours.

If this happens, customers will leave you bad reviews. The code on Line 98 will increase

the bad_reviews counter by 1.

12. Click at the end of Line 110, as shown in the screenshot below.

13. Modify the arguments inside the def __init__ function parentheses to match the

screenshot below.

The code that you entered above includes the timer to the setup of your game counters

so that the program will measure the amount of time passing.

14. Click at the end of Line 116, as shown in the screenshot below.

15. Press ENTER.

16. Type the code you see on Lines 117 – 120 of the screenshot below.

Lines 117 – 120 all set up class object attributes for the Counters class: self.timer,

self.time_rect, self.bad_reviews, and self.bad_reviews_rect. Whenever a new Counters

class object is generated, it will generate with these attributes.

17. Click at the end of Line 133, as shown in the screenshot below:

18. Press ENTER twice.

19. Type the code you see on Lines 135 – 142 of the screenshot below. Ensure your

indentation matches the indentation shown in the screenshot.

Line 135 creates another class method for the Counters class. This method is called

draw_bad_reviews and it takes the game_window argument when it is called.

Line 136 checks to see if the bad_reviews_rect setting on the current class object is set

to True, meaning that it has a value. Remember that when you set up the

bad_reviews_rect attribute in the __init__ method, it was set to None. Whenever the

bad_reviews_rect setting is set to True, it means that there is a value for the

bad_reviews counter. If this is true, Line 137 will execute.

Line 137 erases the old value in the bad_reviews_rect by blitting the backtround image

onto the game window at the location of the bad_reviews_rect.x and bad_reviews_rect.y

coordinates. The final item in the parentheses indicates how large the blitted background

square is. In this case, this item will encompass the size specified in the

self_bad_reviews.rect variable. The goal is to cover up any number that was already in

that position with the background image.

Line 138 creates a bad_reviews_surf variable and sets its value to be equal to the

display_font.render method to set the font display settings for the bad reviews text. This

method will use the integer inside the bad_reviews setting of the class object and

convert it to a string so it can be displayed as text. Anti-aliasing is turned on (or set to

True) so that the letters appear smooth, and the text is set to the equal to the color

settings stored in the WHITE variable.

Line 139 creates a variable called self.bad_reviews_rect and sets its value to be the

result of the .get_rect() function. This function creates a rectangle the size of the

bad_reviews_surf variable.

Lines 140 and 141 calculate the display location of the bad_reviews_rect x and y

coordinates. By default, whenever rectangles are created using .get_rect(), their

coordinates are automatically set to 0, 0. The calculations you perform in these lines will

set the bad reviews rectangle to appear in the second-to-last column and the bottom row

of the grid.

Now that you have erased your previous number from the screen and set the display

font, color, and location, you have to blit your new number to the screen. Line 142 will

blit the value of the bad_reviews_surf (the font) at the location specified

(self.bad_reviews_rect).

20. Press ENTER twice.

21. Type the code you see on Lines 144 – 151 of the screenshot below. Ensure your

indentation matches what is shown in the screenshot.

Line 144 creates another class method in the Counters class called draw_time. This

method will run through similar steps as the previous method in order to update the time

on the screen. The time will be displayed in the third-to-last column and the bottom row

of the grid.

It is important to note that the math function found on Line 147 (in the timer_surf

function) calculates the time left in the game, in seconds. Remember that the loop_count

setting of the object counts how many time the game loop has run. By taking the

WIN_TIME (number of frames in the game) minus the number of loops the game has

made (or how many frames have already elapsed), you can get the number of frames

remaining in the game. From there, dividing those frames by the FRAMERATE of 60 will

give you the number of seconds left in the game.

22. Click at the end of Line 156, as shown below.

23. Press ENTER.

24. Type the code you see on Lines 157 – 158 of the screenshot below. Ensure your

indentation matches what is shown in the screenshot.

The code on Lines 157 and 158 call the draw_bad_reviews and the draw_time functions

inside the update method. These functions both require the programmer to specify what

game_window they want the functions to run in, and so we tell the program that we want

our functions to run in the game window called game_window. If our game had more

than one window going, it would be more important to label our game_windows with

better names.

25. Click at the end of Line 226, as shown in the screenshot below.

26. Modify the code in the parentheses to match the screenshot below.

This addition allows the WIN_TIME variable to be used whenever an object instance of

the Counters class is created. Adding the WIN_TIME variable here is important because

the draw_time method using the WIN_TIME variable in a calculation that it performs. If

you do not tell import the WIN_TIME variable into the object instance, than the

draw_time method would not be able to perform a calculation and you would receive an

error.

Class methods cannot reference variable information located outside of the class. Since

the WIN_TIME variable was defined at the beginning of the code and not within the

Counters class, it needs to be imported into the counter class objects to be able to be

used.

27. Click at the end of Line 274, as shown in the screenshot below.

28. Press ENTER.

29. Type the code you see on Line 275 of the screenshot below.

This code creates another variable called exited and sets its value to True. This variable

represents True if either the win or lose conditions have been met. If the player opts to

quit the game, we will change this variable to False since neither the win or lose

conditions have been met at that time. This will make more sense as we get into the

end-of-game loop that we will create.

30. Click at the end of Line 285, as shown in the screenshot below.

31. Press ENTER.

32. Type the code you see on Line 286 of the screenshot below. Ensure your indentation

matches what is shown in the screenshot.

The code on Line 286 will change the value of the exited variable to False, meaning that

neither the win or lose conditions have been met and the player has quit the game.

33. Click at the end of Line 322, as shown in the screenshot below.

34. Press ENTER twice.

35. Type the code you see on Lines 324 – 329 of the screenshot below. Ensure your

indentation matches what is shown in the screenshot.

Line 324 contains a comment separator to separate blocks of code.

Line 325 contains a comment.

Line 326 tests to see if the bad_reviews counter value is greater than or equal to the

value of the MAX_BAD_REVIEWS variable (in this case, 3).

If Line 326 is found to be true, Line 327 runs to set the game_running variable to False,

meaning the game is over. Notice that the exited variable is NOT changed, meaning that

it is still set to True. This is because a win or a loss condition has been met – the player

has lost the game by exceeding the amount of bad reviews they are allowed to have.

Line 327 tests to see if the loop_count value is greater than the WIN_TIME variable. If

this is the case, then the player has won the game because the player has made it all

the way through the play time without receiving 3 or more bad reviews. Since the game

is over, the game_running variable will again be set to False. But, again, the exited

variable is NOT changed because a win or a loss condition has been met – the player

has won the game by making it through the play time without 3 bad reviews.

36. Click at the end of Line 348, as shown in the screenshot below.

37. Press ENTER.

38. Type the code you see on Lines 349 – 361 of the screenshot below. Ensure your

indentation matches what is shown in the screenshot.

Line 349 contains a comment separator.

Lines 350 and 352 contain comments.

Line 353 creates a variable called end_font. The end_font variable is set to use the Arial

font from our PC in size 25pt.

Line 355 creates an “if” function that checks to see if the exited variable is equal to True.

Remember that this loop will only run when the game_running variable has been set to

False.

If the “exited” variable is still set to True, meaning that either a win or a lose condition

has been met, the code will continue down to Line 356.

Line 356 will check the value of the bad_reviews counter to see if it is greater than or

equal to the value of the MAX_BAD_REVIEWS variable (currently set to 3). If this is true,

than the end_surf variable is created (Line 357), which will render the text ‘Game Over’

using the Arial font. The text anti-aliasing will be set to True, meaning that the letters will

appear smooth, and the color will be set to the color settings specified in the WHITE

variable.

Line 358 will run if the bad_reviews counter is NOT greater than or equal to the value of

the MAX_BAD_REVIEWS variable, meaning that the player has won the game. If this is

the case, Line 359 will run to create the end_surf variable that renders the text ‘You

Win!’’. Again, anti-aliasing is turned on and the color is set to be the RGB color values

specified in the WHITE variable.

After the appropriate message has been rendered, Line 360 will display the end_surf

message at the location of 350, 200.

Line 361 runs the update function to update all displays in the game.

39. Press ENTER.

40. Type the code you see on Lines 362 – 370 of the screenshot below. Ensure your

indentation matches what is shown in the screenshot.

Line 362 contains another comment separator.

Line 363 contains a comment.

Line 364 begins a “while” loop that will run while the exited variable is equal to True.

Line 365 begins a “for” loop that will check for any events stored in the program by

running the event.get() method.

Line 366 checks to see if the events value is equal to QUIT. If it is, then the exited

variable will be set to False and the loop will stop (Line 367).

Until the event is equal to QUIT, the game will continue refreshing itself and updating

itself every frame. Because of this, we need to also tell the program what the

FRAMERATE is. That is what Line 368 does.

Line 370 contains a comment.

41. That is the end of our game! If you run the module now, you should see a functioning

game that lets you set traps. The game should track your pizza bucks, the time you have

left, and the number of bad reviews you have received. If you win or lose the game, you

should see a message display in your game window.

Final Game Code:

