
Chapter 12 Practice Directions

1. Using your Windows button menu, find and launch your IDLE program.

IDLE is the integrated development environment associated with Python. It is made up

of a code editor where you type your code along with other helpful tools that allow you to

write, save, and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic

debugging tips to programmers if there are problems with their code.

2. Your IDLE window should look something like this once it has launched.:

On Startup, IDLE will display the Python Shell, which can be used to give commands to

the computer’s operating system. Since we are viewing the shell through IDLE and not

the actual command prompt window, the commands that we type into the Shell will not

communicate directly with our operating system. However, you can type similar

commands in the Python Shell directly from the Python program (not through IDLE) and,

if you have permission to access the operating system’s commands, you can

communicate with the computer’s operating system that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do,

like writing code for our game or debugging a file.

3. Go to File > Open and then browse to find your VampirePizzaAttack file that we created

and open it.

4. Your Python file and code from last chapter will open up.

5. We will now begin to code the next part of our game. I like to make my coding window

larger so that I can see all of my code a bit better, but that is a personal decision.

Remember as we move through these exercises that your spelling, capitalization, and

indentation should match. If it doesn’t, your program likely won’t work.

6. Click at the end of Line 86, as shown in the screenshot below.

7. Press ENTER.

8. Type the code that you see on Line 87 of the screenshot below. Ensure your indentation

matches the indentation shown in the screenshot.

The code on Line 87 creates another instance attribute called self.health and sets its

value to be 100.

9. Click at the end of Line 92, as shown in the screenshot below.

10. Press ENTER.

11. Type the code that you see on Lines 93 – 96 of the screenshot below. Ensure that your

indentation matches what is shown in the screenshot. You will also have to revise the

game_window.blit… code that is already in your file to appear as shown in the

screenshot.

The code on Line 93 creates an if function that checks the value of the object’s health

and rect.x position. If the object’s health is less than or equal to 0 or the rect.x position is

less than or equal to 100, the code on Line 94 runs. Line 94 will kill that particular class

object.

If the health or the rect.x position are not less than or equal to 0 or less than or equal to

100, respectively, the code on Line 96 will run. This code, as we have previously

discussed, will update the game window by blitting the vampire image at its new

position.

12. Press ENTER twice.

13. Type the code that you see on Lines 98 – 102 of the screenshot below. Ensure your

indentation matches what is shown in the screenshot.

Line 98 creates another method within the VampireSprite class. This method is called

“attack” and it takes the tile argument whenever it is called.

Line 99 contains an if function that checks to see if that class object’s tile.trap attribute is

set to “SLOW”. Remember, whenever the user uses a garlic trap, the trap_type will be

set to SLOW. If the trap type on that tile is equal to SLOW, then the code on Line 100

executes to change the speed of the vampire sprite object to the value of the

SLOW_SPEED variable.

Lines 101 and 102 repeat the process to check if the class object’s tile.trap attribute is

set to DAMAGE (the user has used the pizza cutter trap). If that is the case, than the

program will subtract one from the VampireSprite object’s health.

14. Asdfhgaksdfhgasfd

15. Click at the end of Line 156, as shown in the screenshot below.

16. Delete the text on Line 156 and add the text shown in the screenshot below instead.

17. Press ENTER twice.

18. Type the code you see on Lines 159 – 166 of the screenshot below. Ensure your

indentation matches what is shown in the screenshot.

Line 159 creates another class called PlayTile. This is a subclass based off of the

BackgroundTile class. Our PlayTile objects will consist of the main game screen that the

player can click on to set traps.

Line 160 creates the first method in the PlayTile subclass. This method is called set_trap

and it will need the trap and counters arguments entered when it is called.

Line 161 contains an if function that checks to see if the boolean value of that tile’s trap

setting is true, which means that the tile was selected. The second portion of the if

statement returns the opposite of the “bool” value for that particular background tile’s

trap setting. For example, if the tile has been selected, the boolean would evaluate to

True. From there, if the self.trap tile is still equal to None, the boolean statement would

instead return a result of True, as opposed to False. So, if the tile was selected and it

does not currently have a trap on it, the statement would evaluate to True.

If Line 161 evaluates to True, the code on Lines 162 – 165 will run. This code will

subtract the cost of the trap from the player’s pizza bucks, change the value of the

self.trap object attribute to be “trap” instead of None, and, if the trap setting entered by

the user is equal to EARN, it will add one to the player’s buck_booster setting.

This method will also return the value of None. To make your functions return a value,

you need to use the return statement seen on Line 166. In this case, the function will

return the value of None when it is called. You can omit the return value of a function, as

we have done before, or use a bare return without assigning a return value. In both

cases, the return value will be done. However, it is syntactically correct to include a

return value in all methods, as we have done here.

19. Press ENTER twice.

20. Type the code that you see on Lines 168 – 170 of the screenshot below. Ensure your

indentation matches that shown in the screenshot below.

Line 168 creates a new class method called draw_trap for the PlayTile class. This

method will take the game_window and trap_applicator arguments when it is called.

Line 169 checks to see if the self.trap attribute for that particular object is set to anything.

Remember, boolean values can either be true or false. If the self.trap attribute has

anything assigned to it other than None, than this line will return the value of True.

Remember in our previous method, the set_trap method, we changed the self.trap

attribute to say “trap” if the player has selected a tile and that tile does not already have

a trap applied to it.

If the self.trap attribute is is found to have a value (or found to be True), Line 170 runs to

blit the trap_img picture at the location of the PlayTile’s rect.x and rect.y coordinates.

21. Press ENTER twice.

22. Type the code that you see on Lines 172 - 181 of the screenshot below. Ensure your

indentation matches what is shown in the screenshot.

Line 172 creates another subclass of the BackgroundTile. This subclass is called

ButtonTile. For your reference, a Button Tile will be used to create buttons on the game

window that allow a player to select a trap to apply.

Line 173 creates the first method of this subclass. This method is called set_trap. It will

require the trap and the counters argument when it is called.

Line 174 starts an “if” statement that will check whether the pizza.bucks founter is

greater than or equal to the cost of the trap. If this test returns the value of “True”, than

this function will return the result of the self.trap class object attribute. Otherwise, it will

return the value “trap”.

Line 177 is blank.

Line 178 creates another method in this subclass. This method is called draw_trap and

will require the game_window and trap_applicator arguments when it is called.

Line 179 checks to see if the self.selected attribute for that tile is set to True. If it is, it will

then check to see if its self.selected value is equal to self.trap (Line 180).

If both these conditions are true, than the draw.rect function on Line 181 will run to draw

a rectangle in the game window at the location of that button tile. The RGB values of

238, 190, 47 corresponds to a yellow/gold color. The rectangle will be the size of the

WIDTH and HEIGHT variables. The border of the rectangle will be 5 pixels.

23. Press ENTER twice.

24. Type the code you see on Lines 183 – 190 of the screenshot below. Ensure your

indentation matches that of the screenshot.

Line 183 creates another subclass called InactiveTile. This subclass is based off of the

BackgroundTile class. For your reference, inactive tiles are tiles around the outside of

the grid that do not function as either buttons the player can use to select traps or as

tiles on the actual game grid that the pizza sprites will move across. They are the ouside

tiles that do not do anything.

Line 184 contains a comment.

Line 185 creates the set_trap method for the InactiveTile subclass. This method will

return None. This means that the tile will not be able to have a trap set on it.

Line 186 is blank and Line 187 contains another comment.

Line 188 creates another method in this subclass. This method is called draw_trap. This

method will use the “pass” keyword to tell the program to do nothing.

25. Select Lines 220 – 223, as shown in the screenshot below.

26. Hit your BACKSPACE key twice to delete the four lines that are selected and move your

insertion point up to the end of the previous line.

27. Press ENTER. Your insertion point should be indented.

28. Type the code you see on Lines 220 - 231 of the screenshot below. Ensure your

indentation matches what is shown in the screenshot.

The code on Line 220 creates a new variable called tile_rect. This variable is set to be

the result of the Rect function. The first two numbers in the parentheses after the Rect

function specify the x and y location for the top left corner of the rectangle. The second

two numbers in the parentheses specify the rectangle’s width and height. Since this is

found in the “for” loop that will loop 11 times, and that “for” loop is nested until another

loop that repeats itself 6 times, a new tile_rect location will be calculated every time a

background grid tile is generated. The tiles are generated from by row from left to right

and from top to bottom.

Line 221 begins an if function that checks whether the current column iteration the “for”

loop is on is less than or equal to 1. In other words, the program will check to see if it is

still working on populating the background grid in the first or second column. Remember,

column numbers and row numbers start at 0.

If this is the case, Line 222 runs. This line will create a new variable called new_tile and

set the variable’s value to be an instance of the InactiveTile class object at the location

stored in the tile_rect variable.

If the column number is not less than or equal to 1, Line 222 will be skipped and the

program will move down to the code on Line 223.

Line 224 checks to see if the current row iteration is row 5, meaning it is the 6th row from

the top (or the bottom row in your grid). If this is the case, the program will then check to

see if the column index number is 2, 3, or 4 (Line 225).

If the program determines that it is iterating on the row with an index of 5 and a column

index of 2, 3, or 4, Line 226 will run. This will create a variable called new_tile and set its

value to be a ButtonTile class object using the tile_rect location that was calculated

earlier. Line 226 will set the new_tile.trap attribute to either SLOW, DAMAGE, or EARN.

To determine which tile gets assigned which trap, it takes a bit of deduction. Remember,

list items are numbered by their index values. Therefore, in the first list on Line 227, the

SLOW trap has an index value of 0 because it is the first item in the list. The DAMAGE

trap has an index value of 1 since it is the second in the list. The EARN trap has an

index value of 2 since it is the third in the list.

In the second set of brackets, you see that the current column index value is found and

then the program subtracts 2 from that number.

Remember we are working in the tiles with column indexes of 2, 3, and 4 that are in row

5 of our grid. So, if you take the column index number 2 and subtract 2 from it, you will

get 0. This zero number corresponds to the list item with a 0 inxex, which is the SLOW

item. This means that the first new_tile.trap setting will be SLOW and will be set to the

tile with a column index value of 2 and a row index value of 5.

The same process would be repeated to assign the tile in column index 3 the DAMAGE

trap and column index 4 the EARN trap.

In summary, Line 227 will assign the appropriate tile traps to the appropriate tiles based

on which column the tiles are in.

Lines 228 and 229 will execute if the row index is equal to 5 but the column index is NOT

2, 3, or 4. Line 229 will create more instances of the InactiveTile class objects at the

tile_rect location specified.

Line 230 will execute if the column index is not less than or equal to 1 and the row is not

equal to 5.

Line 231 will create a PlayTile class object at the location calculated for the tile_rect

variable. Again, remember this loop runs every time a new tile is generated. So, the

tile_rect position will be different each time the loop runs.

29. Press ENTER.

30. Type the code shown on Lines 232 – 234 of the screenshot below. Ensure your

indentation matches what you see in the screenshot.

Line 232 appends the new_tile that was created to the row_of_tiles list.

Line 233 contains an if statement that checks to see if the row index is5 and if the

column index is 2, 3, or 4.

Line 234 blits the trap image that matches the trap assigned to the new_tile at the x and

y location of the new_tile.

31. Press ENTER.

32. Type the code your see on Lines 235 - 237 of the screenshot below. Ensure your

indentation matches what is shown in the screenshot below.

Lines 235 - 237 check to see if the column index DOES NOT equal 0 or 1 and if the row

index DOES NOT equal 5. If both of these conditions are true, Line 235 will run the

draw.rect function to draw a rectangle on the background image using the tile_color

specified (currently, it is set to white), the width and the height specified, and the location

of the x and y coordinates for the top left corner of the rectangle (the first two numbers in

the parentheses). The last number in the parentheses, 1, will be the border width in

pixels.

33. Select Lines 288 – 293, as shown in the screenshot below.

34. Click your BACKSPACE key twice to delete the selected lines and move your insertion

point to the end of the previous line.

35. Press ENTER then BACKSPACE again. Your insertion point should be indented one

indentation.

36. Type the code you see on Lines 288 – 292 of the screenshot below. Ensure your

indentation matches what is shown in the screenshot.

Previously in our game loop, every time a VampireSprite collided with a trap, it was set

to slow down. But now we have three different types of traps that all do different things.

To account for this, we need to tell the program to apply the effect of each tile.

Line 288 will check to see if there is a value for the left_tile attribute. Remember the

left_tile variable specifies that, if there is a tile on the grid, what column that tile is in. The

value of the left_tile variable will be None if there is no vampire sprite on the grid.

Likewise, the value of the right_tile grid will check to see if the right side of the sprite is

on the grid and, if so, where it is at. So, if the boolean function on Line 286 will return

true if the left_tile variable has a value, meaning that the left side of the vampire sprite is

on the grid.

If Line 289 returns the value of True, the attack function that you created in your vampire

sprite class will run, which applies the appropriate trap to the appropriate tile.

If Line 288 returns the value of False, Line 289 will be skipped and the program will

move down to Line 290. Line 290 checks to see if the right_tile variable has a value,

meaning that the right side of the tile is on the grid. If this is true, then the program will

double-check to make sure that the right_tile and the left_tile variable do not equal each

other. If they don’t, then Line 292 will run to run the attack method from your Vampire

Sprite class in the right_tile and apply the appropriate trap.

37. Click at the end of Line 297, as shown in the screenshot below.

38. Press ENTER twice.

39. Type the code you see on Lines 299 – 301 of the screenshot below. Ensure your

indentation matches what is shown.

The code above will update the traps by redrawing them on all of the tiles using the

draw_trap function you defined earlier.

Final Code:

