Chapter 11 Practice Directions

Before opening up IDLE, we need to save the game assets that we will be using this
chapter to our game directory folder. Assets are images, videos, or other media that are
not code but are part of your game. Navigate out to Google Classroom and find the
assignment for this Chapter.

Select the garlic.png image to view the preview screen for the image.

Click the three dots at the top right corner and select the “Open in new window” option
from the list.

@ Cietails

z Openin new window

In the new window that opens up, click the Download button in the top right corner to
download the image.

You will see your downloaded image appear in a task bar along the bottom of your
browser window.

9.

Our game assets must be saved in the same folder on the PC that our actual game file
is saved in. That is why we created the game directory folder last chapter. Click the
“Show All” button in the bottom right corner on the task bar.

A list of all of your Downloads will open up.

Click “Show in folder”.

https://doc-0k-68-docs.googleusercontent. com/docs/securesc/eb1gat8efjpn2Zmrci f

Show in folder

This will take you to your Downloads folder on your PC.

10. Copy or cut the garlic.png file.

11. Navigate to your vampire_pizza_directory folder on your H: or V: drive. You may have to
click the “This PC” link in the menu at the left and then find your student drive and the
appropriate folder.

12. Paste the image file into your vampire_pizza_directory folder.

s

(] MName Date medified Type Size
|&] restaurant 1/7/2019 4:46 PM JPG File 334 KB
[&] vampire 172272021 10:50 AM PMG File 46 KB
Mj VampirePizzaAttack 1/19/2021 4:33 PM PY File 2 KB
(=] garlic 7/25/2018 5:38 PM PMG File 11 KB

13. Repeat this process to download and save the pizzacutter.png and pepperoni.png
images to your vampire_pizza_directory folder.

14. You can close out of your Windows Explorer window after you have saved all three
images into it.

15. Using your Windows button menu, find and launch your IDLE program.

Al Apps Documents Web Mare ¥

Best match

IDLE (Python 2.8 64-hit)
App

Saarch the web

IDLE is the integrated development environment associated with Python. It is made up
of a code editor where you type your code along with other helpful tools that allow you to
write, save, and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic
debugging tips to programmers if there are problems with their code.

16. Your IDLE window should look something like this once it has launched.:

| /& Python 3.8.6 Shell - O X
File Edit Shell Debug Options Window Help
Python 3.8.6 (tags/v3.8.6:db45529, Sep 23 2020, 15:52:53) [M5C v.1927 €4 bit (M

DE4)] on win32
Type "help", "copyright"™, "credits™ or "license ()" for more information.
o

Ln:3 Cok4

On Startup, IDLE will display the Python Shell, which can be used to give commands to
the computer’s operating system. Since we are viewing the shell through IDLE and not
the actual command prompt window, the commands that we type into the Shell will not
communicate directly with our operating system. However, you can type similar
commands in the Python Shell directly from the Python program (not through IDLE) and,
if you have permission to access the operating system’s commands, you can
communicate with the computer’s operating system that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do,
like writing code for our game or debugging a file.

17. Go to File > Open and then browse to find your VampirePizzaAttack file that we created

and open it.

i Lé‘ Open b4

« R » ThisPC ¢ Documents (H:) » vampire_pizza_directory w & Search vampire_pizza_direct...
Organize = Mew folder =~ [N 0

-

8] MName Date modified Type Size

Quick access
B teachericons
4 Downloads =

M_”i VampirePizzaAttack 1/19/2021 £33 PM PY File 2KB

‘j Documents =
[&=] Pictures
2020-21

Puzzle 4

18. Your Python file and code from last chapter will open up.

19. We will now begin to code the next part of our game. | like to make my coding window

20.

larger so that | can see all of my code a bit better, but that is a personal decision.
Remember as we move through these exercises that your spelling, capitalization, and
indentation should match. If it doesn’t, your program likely won’t work.

In this chapter, we will actually create the three types of traps that the player can use to

attempt to stop or slow the vampire sprite’s progress across the grid. Our three traps will
be:

a. Garlic: Used to slow down the vampire pizzas in their tracks. The garlic will cut
the speed of the vampire pizza sprites in half.

b. Wooden pizza cutters: Similar to wooden stakes but are specifically designed for
pizza-shaped vampires. They do damage that will destroy the pizzas over time.

c. Pepperoni: Allows you to earn pizza bucks faster so you can buy more traps.

Click at the end of Line 57, as shown in the screenshot below.

#53et up the enemy image

#Load the image into the program

Pizza img = image.load('wvampires.png')
#Convert the image to a surface

pPizza surf = Surface.convert alpha (pizza img)

WVAMPIRE PIZZR= transform.scale(pizza_ surf, (WIDTH, HEIGHT]ﬂ

#53et up classes
#Create an enemy class
VanpireSprite (sprite.Sprite):

21. Press ENTER twice.

22. Type the code that you see on Lines 59 — 71 of the screenshot below.

#:D:?E:t the image to a surface
pizza surf = Surface.convert alpha(pizza img)
VAMPTIRE PTIZZh= tramsform.scale(pizza surf, (WIDTH, HETIGHT))

#tile trap images
garlic img = image.load('garlic.png"')

garlic surf = Surface.convert (garlic img)

GARLIC = transform.scale(garlic surf, (WIDTH, HETGHT))
GARLIC.=set_alpha (127)

cutter_img = image.load('pizzacutter.png')

cutter surf = Surface.convert (Cutter_img)

CUTTER = transform.scale (cutter surf, (WIDTH, HETGHT))
CUTTER.=set_alpha (127)

pepperoni_img = image.load('pepperoni.png’)

pepperoni surf = Surface.convert (pepperoni img)
PEPPERONT = transform.scale (pepperoni surf, (WIDTH, HETGHT))
PEPFERONI.=set_alpha (127}

#3et up classes
#Create an enemy class

The code on Line 59 creates a variable called garlic_img. The value of the garlic_img
variable is set to the garlic.png image.

Line 60 converts the image in the garlic_img variable (your garlic.png image) to a
surface and assigns the newly created surface to a new variable called garlic_surf.

The code on Line 61 creates a new constant variable called GARLIC. The value of this
variable will be set to a scaled image of the garlic_surf surface that you just created. The
surface’s size will be equal to the value of the WIDTH and HEIGHT variables.

The code on Line 62 sets the surface’s alpha value. Alpha values range from 0 to 255
and represent the opacity or transparency of a surface. A surface with an alpha value of
255 is completely opaque, while a surface with an alpha value of 0 is completely
transparent. If alpha values are not specified, than the alpha setting for a surface is
disabled. Giving our surface an alpha value of 127 will make It slightly transparent.

The code on Lines 63 — 71 repeat the same procedure (loading an image, converting it
to a surface, scaling it, and then giving it an alpha value) for the cutter.png and the
pepperoni.png images.

23. Click at the end of Line 120, as shown in the screenshot below.

update (self, game window) :
self.loop_count += 1
self.increment_bucks ()
self.draw_backs(game_windowﬂ
#Create a class of sprites. Each tile has an invisible interactive field attached to it which is a sprite in this class.
BackgroundTile (sprite.Sprite):
_ init_ (self):

24. Press ENTER twice.

25. Type the code that you see on Lines 122 — 128 of the screenshot below. Ensure that
your indentation matches what is shown in the screenshot.

update (self, game_window) :
self.loop_count += 1
self.increment_bucks ()
self.draw_bucks (game_window)

#5et up the different kinds of traps
Trap(ockject):
_ init_ (self, trap_kind, cost, trap img):
self.trap kind = trap kind
self.cost = cost

self.trap imag = trap_imd

#Create a class of sprites. Each tile has an invisible interactive field attached to it which is a sprite in this class.
BackgroundTile (sprite.Sprite):

The code on Line 122 contains a comment.
Line 123 establishes another class of objects. This class is called Trap.
Line 124 is a blank line.

Line 125 contains the __init__method. As we have learned before, this method is
always the first method used when creating a new class. This method sets up the rules
for all objects created under this class. The __init_ method indicates that every object
created under this class will need to have the attributes of trap_kind, cost, and trap_img.
The values of these attributes for each instance of the Trap class can be different if the
programmer chooses. The programmer will enter these values manually when the object
is created.

Lines 126 - 128 contain attribute specifications for each Trap object created. For
example, Line 126 assigns the object’s trap_kind attribute to match the trap_kind
parameter/argument entered by the programmer when the object is created. Lines 127
and 128 do the same thing to assign the object’s cost and trap_img attributes to match
the parameters/arguments entered by the programmer when the object is created.

26. Press ENTER twice.

27. Type the code that you see on Lines 130 — 133 of the screenshot below. Ensure your
indentation ma_'g_c;_k_\es__/_/_h@:[__i__s shown in the screenshot.

self.cost = cost
self.trap_imag = trap_img

Traphpplicator (ockject):

_ init__ (self):
self.selected = I

#Create a class of sprites. Each tile has an invisible interactive field attached to it which iz a sprite in this class.

BackgroundTile (sprite.Sprite):

Line 130 creates another class called TrapApplicator. In the last section of code, we
created a trap object. However, we need a separate tool to select the traps and apply
them to the tiles. This is what we will call a TrapApplicator.

The TrapApplicator is just an object that keeps track of which trap the player wants to
use and the tile on which the player wants to add the trap. Whenever an instance of the
TrapApplicator is created, the player will have to specify the trap and the tile that they
would like to use. This will make more sense at the end of the next chapter.

Line 131 is blank.

Line 132 contains the __init__ method. As we have learned before, this method is
always the first method used when creating a new class. This method sets up the rules
for all objects created under this class. Under the __init__ method, we specified that the
value of the selected attribute for each new class object will be set to None.

28. Press ENTER twice.

29. Type the code you see on Lines 134 — 136 of the screenshot below. Ensure your
indentation matches what is shown in the screenshot.
Traphpplicator (ockject):

_ init_ (self):
self.selected =

select_trap (self, trap):
trap.cost <= counters.pizza bucks:

self.selected = trad

#Create & class of sprites. Each tile has an invisible interactive field attached to it which is a sprite in this class.

Line 134 creates another class method called select_trap. The select_trap method takes
the trap argument, so whenever this method is called, the programmer will have to tell
the computer what trap has been selected.

Line 135 contains an if statement that checks to see if the value of that particular trap’s
cost is less than or equal to the value of the pizza_bucks variable that represents how
much money the player has.

If the player has enough money to purchase the trap, Line 136 executes and the
selected attribute for that class object is changed to “trap”.

30. Press ENTER twice.

31. Type the code that you see on Lines 138 — 139 of the screenshot below. Ensure your
indentation matches what is shown in the screenshot.
class TraplApplicator (object):

def _ init_ (self):
self.selected = lione

def select_trap (self, trap):
if trap.cost <= counters.pizza bucks:
self.selected = trap

def select_tile(self, tile, counters):
self.selected = tile.set_trap(self.selected, coantersﬂ

#Create a class of sprites. Each tile has an invisible interactive field attached to it which is a sprite in this class.
lass BackgroundTile (sprite.Sprite):

Line 138 creates another class method called select_tile. This method takes the tile and
counters argument.

Line 139 changes the value of the self.selected attribute to be the result of the set_trap
method. We haven't yet created the set_trap method so this line won’t completely make
sense until the next chapter. However, just know that this method will be used to place
the selected trap on the selected tile.

32. Click at the end of Line 154, as shown in the screenshot below.
$#Create class instances

foreate a sprite group for all VampireSprite instances
2ll vampires = sprite.Group()

counters=Counters (STARTING BUCES, BUCE RATE, STARTING_BUCK_BDDSTERH

#Initialize and draw the background grid

33. Press ENTER twice.

34. Type the code you see on Lines 156 — 160 of the screenshot below.
counters=Counters (STARTING BUCKS, BUCK RATE, STARTING BUCK BOOSTER)

SLOW = Trap('SLOW', 5, GARLIC)
DAMAGE = Trap('DAMAGE', 3, CUTTER)
EARN = Trap('EARN', 7, PEPPERONI)

trap applicator = TrapApplicatDr(ﬂ
#Initialize and draw the background grid

The code on Line 156 creates the SLOW constant variable. The value of the SLOW
variable is set to be a new Trap class object. This class object will be assigned the value
of SLOW for the trap_kind object attribute, 5 for the cost attribute, and GARLIC for the
trap_img attribute. Essentially, you are setting the trap_kind value for this new object to
SLOW, the cost of this new class object to 5, and the image displayed by this new class
attribute to be the GARLIC surface/image.

Lines 157 and 158 do the same thing to create new class objects using the CUTTER
and PEPPERONI surface images, different costs (3 and 7), and different trap_kind
values (DAMAGE and EARN).

Line 159 is blank.

Line 160 creates a variable called trap_applicator and sets its value to be a new class
object using the TrapApplicator() class.

What these five lines of code have done is create three Trap class object instances,
each using different specifications for traps, and an object instance of the TrapApplicator
class.

35. Click at the end of Line 203, as shown in the screenshot below.

#Check for events

#Checking for and handling events

for event in pygame.event.get():
#Exit loop on quit
if event.type == QUIT:

game running = False

#5et up the background tiles to respond to a mouse click
elif event.type == pygame.MOUSEBUTTONDOWH :

X, ¥ = pygame.mouse.get pos ()

tile grid[y//100][x//100].effect = ?:14

e e

#Create VampireSprite instances

36. Revise the code on Line 203 to match what is shown in the screenshot below.

#5et up the background tiles to respond to a mouse click
elif event.type == pygame.MOUSEBUTTCHNDOWH:
X, ¥ = pYgame.mouse.get pos ()
trap applicator.select tile(tile grid[y//100][x//100], cnuntersﬂ

The revision to the code on Line 203 tells the trap_applicator object to run its select _tile
method at the location that the use has clicked on the grid. It also uses the counters
variable to figure out how much money the player has. This will be relevant in a later
chapter.

37. Click at the end of Line 214, as shown in the screenshot below.

¥
#5et up collision detection
#draw a background grid
for tile row in tile grid:
for tile in tile_rnwd

GAME WINDOW.Elic (BACEGROUND, (tile.rect.x, tile.rect.y), tile.rect)

for vampire in all vampires:

38. Press ENTER.

39. Modify the code in this block to appear like the code shown in the screenshot below.
Ensure your indentation matches what is shown.

#5et up collision detection
#draw a background grid
tile row tile grid:
tile tile row:
bool (tile.trap) :
FAHE_WINDDW.blitiEACKGRDUND, (tile.rect.x, tile.rect.v), tile.rect)

vampire all vampires:

The modification you have just made will check to see if the value of the trap variable for
that tile is set to True or False. If it is True, the background image will be blitted over that
particular trap tile’s location. Essentially, this line of code will allow the background
image to cover up the trap’s location. This isn’t relevant right now, but we will need this
feature in the next chapter when we work on moving traps across the grid from one tile
to another.

40. Go to File > Save.
41. You may choose to run your module, but you will probably end up with some errors

because we haven’t done all the the programming for the various traps we have in our
game.

Final Code:

#Import Likbraries
import pygame

-t randint

#Initialize pygame
pygame.init ()

#=et up clock
clock = time.Clock ()

#Define constant variables

#Define the parameters of the game window
WINDOW WIDTH = 1100
WINDOW HEIGHT = €00
WINDOW RES = (WINDOW WIDTH, WINDOW HEIGHT)

#Define the tile parameters
WIDTH = 100
HEIGHT = 100

#Define colors
WHITE = (255, 255, 255)

#5et up rates
SPAWHELTE = 3&0
FRAMERATE = &0

#5et up counters

STARTING BUCKES = 15
BUCE_RATE = 120
STARTTNG BUCE _BOOSTER = 1

#Define speeds
REG SPEED = 2
SLOW_SPEED = 1

#Load assets

#Create window
GAME WINDOW = display.set_mode (WINDOW RES)
display.set_caption('Vampirs Fizza')

#S5et up the background image

background img = image.load('restaurant.jpg')

background surf = Surface.convert_alpha (background img)
BACKGROUND = transform.scale (background surf, (WINDOW _RES))

#5et up the enemy image

#Load the image into the program

pizza img = image.load('vampire.png')

fConvert the image to a surface

pizza_ surf = Surface.convert alpha (pizza img)

VAMPIRE PIZZR= transform.scale(plzza surf, (WIDTH, HEIGHT))

#tile trap images

garlic img = image.load('garlic.png')

garlic surf = Surface.convert (garlic_img)

GARLIC = transform.scale(garlic surf, (WIDTH, HEIGHT))
GARLIC.set_alpha(127)

cutter_ img = image.load('pizzac .png'}

cutter_ surf = Surface.convert (cutter_img)

CUTTER = transform.scale(cutter_ surf, (WIDTH, HEIGHT))
CUTTER.set_alpha (127)

pepperoni img = image.load('pspperoni.png’)
pepperoni_surf = Surface.convert (pepperoni_img)
PEPPERCNI = transform.scale (pepperoni surf, (WIDTH, HEIGHT))
FEPFERONI.set_alpha (127)

#5et up classes
#Create an enemy class
- =z VampireSprite(sprite.Sprice):

#This function creates an instance of the enemy
def _ imit_ (self):
super (). imit ()
self.speed = REG_SPEED
self.lane = randint (0, 4)
all vampires.add(self)
self.image = VRAMPIRE PIZZA.copy()
v = 50 4+ self.lane * 100
self.rect = self.image.get_rect (center = (1100, y))

$This function moves the enemies from right to left and destrovs them after they'wve left the screen
update (self, game window, counters):

game window.blit (BACKGROUND, (self.rect.x, self.rect.y), self.rect)

self.rect.®x -= self.speed

game window.blit (self.image, (self.rect.x, self.rect.y))

Counters (object):

def ipit (self, pizza bucks, buck rate, buck booster):
self.loop count = 0
self.display font = pygame.font.S5ysFont ("Arial", 25)
self.pizza bucks = pizza_ bucks
self.buck rate = buck rate
self.buck booster = buck booster
self.bucks rect = lione

l=ef increment bucks (self):
if self.loop_count % self.buck rate == 0:
self.pizza bucks += self.buck booster

lef draw bucks (self, game window):
if bool (self.bucks_rect):
game window.blit (BACKGROUND, (self.bucks rect.x, self.bucks_rect.y), self.bucks_rect)
bucks_surf = self.display font.render (str(self.pizza bucks), Trus, WHITE)
self.bucks_rect= bucks_ surf.get_ rect()
self.bucks_rect.x = WINDOW_WIDTH - 50
self.bucks_rect.y = WINDOW_HEIGHT - 50
game window.blit (bucks_surf, self.bucks_rect)

update (self, game window):
self.loop_count += 1
self.increment_bucks()
self.draw bucks(game window)

#5et up the different kinds of traps
cl Trap (okject) :

def _ init_ (self, trap kind, cost, trap img):
self.trap kind = trap kind
self.cost = cost
self.trap imag = trap img

Traphpplicator (object):

def _ init_ (self):
self.selected =

f select_trap (self, trap):
if trap.cost <= counters.pizza_bucks:
self.selected = trap

def select_tile(self, tile, counters):
self.selected = tile.set_trap(self.selected, counters)

ate a class of sprites. Each tile has an inwvisible interactive field attached to it which is a sprite in this class.

BackgroundTile (sprite.Sprite):

f _ init (self):
super (). init
self.effect = Fa

"
Ed

#Create class instances

#create a sprite group for all VampireSprite instances
all vampires = sprite.Group()

counters=Counters (STARTING BUCKS, BUCE RATE, STRRTING BUCE BOOSTER)

SLOW = Trap('SLOW', 5, GARLIC)
DAMAGE = Trap('DAMAGE', 3, CUTTER)
EARN = Trap('EARN', 7, PEPPERCNI)

trap applicator = Trapipplicator()

"
Ed

#Initialize and draw the background grid

#Create an empty list to hold the tile grid
tile_grid=[]

#Define the color of the grid outline
tile_color = WHITE

#Populate the bac
for row in range|

row of tiles

kground grid
&) :
= [1

tile grid.append(row_of_tiles)

for column in
new_tile

range (11) :
= BackgroundTile ()

new_tile.rect = pygame.Rect (WIDTH * column, HEIGHT * row, WIDTH, HEIGHT)

row _of tiles.append(new tile)
draw.rect (BACKGROUND, tile_ color,

(WIDTH*column,

#Display the background image to the screen

GAME WINDOW.blit |
#5tart main game

#Game loop
game running = T

#Check for events

#Checking for and handling events

for event in
#Exit loo
£ event.

BACKGROUND, (0, 0))

loop

pygame.event.getc() :
P on guit
type == QUIT:

game_running = False

HEIGHT*row,

#5et up the background tiles to respond to a mouse click

event.type == pygame.MOUSEBUTTCHNDOWH :
X, ¥ = pygame.mouse.get_pos ()

WIDTH, HEIGHT),

trap_applicator.select_tile(tile_grid[y//100] [x//100], counters)

#Create VampireSp
if randint (1

rite instances
;, SPAWNRATE) == 1:

VampireSprite()

#5et up collision
#draw a backg
for tile row

for tile
if bo

GAME WINDOW.blit (BACKGROUND,

tile row
wvampire 1
wvampire T

for wvampire in

detection
round grid

in tile grid:
in tile_ row:
ol (tile.trap) :

all vampires:

= tile grid[vampire.rect.y //100]
eft side x = vampire.rect.x // 100

ight_side x =

left tile = tile row[vampire left side x]

right

right
if bool{l

leftr tile = Hone
if -1 < vampire right side x < 10:
tile_row[vampire right_side_x]

_tile wall =

_tile = M
eft_tile) and

left_tile.effect:
vampire speed = SLOW_SPEEﬂ

(tile.rect.x,

tile.rect.vy),

tile.rect)

(vampire.rect.x + vampire.rect.width) // 100
if -1 < vampire lefr side x < 10:

1)

if bool (right tile) and right tile.x != left tile.x and right tile.effect:
vampire.speed = SLOW SPEED

1f wvampire.rect.x <= 0:
vampire.kill ()

$Update displav.

for wvampire in all vampires:
vampire.update (GAME WINDOW, counters)

#Update counters
counters.update (GAME WINDOW)

display.update()

#set the framerate
clock.tick (FEAMERATE)

#Close main game loop

#Clean up game
pyvgame.quit ()

