Date _

Name

Chapter Test C 10 For use after Chapter 10

Tell how you can obtain the graph of g from the graph of f using transformations.

1. $f(x) = -x^2 - 2$ $g(x) = x^2 + 5$ **2.** $f(x) = \frac{1}{2}x^2 + 3$ $g(x) = 4x^2 + 1$

In Exercises 3 and 4, use the following information.

The distance a lookout in a submarine can see is related to how high the periscope is above the surface of the water. The height (in feet) of the periscope can be modeled by the function $h = 0.51d^2$ where *d* is the distance (in miles) the lookout can see.

- **3.** Graph the function.
- **4.** Use the graph to estimate how many feet above the surface of the water the periscope must be in order to see a ship 4 miles away.

Graph the function. Label the vertex and the axis of symmetry.

5.	$y = -\frac{1}{4}x^2 + x - 1$					
		У				
	-1	1	3	5.3		
	-1					

In Exercises 7–10, use the following information.

In the past, a concert promoter sold 8000 tickets when the tickets were priced at \$10 each. He wants to increase the price of a ticket, but he estimates he will lose 500 ticket sales for each \$1 increase in the price of a ticket.

- 7. Write a function for the revenue *R* generated by selling tickets in terms of the number *n* of \$1 increases.
- **8.** Write the function in Exercise 7 in standard form.
- **9.** Find the maximum revenue.
- **10.** At what price should the tickets be sold to generate the most revenue?

Algebra 1146Chapter 10 Assessment Book

Copyright © by McDougal Littell, a division of Houghton Mifflin Company

11. Approximate the zeros of the function $f(x) = 2x^2 - 4x - 9$ to the nearest tenth.

12. The net annual income *I* (in dollars) of a family physician between the ages of 27 and 70 can be modeled by the equation $I = -290(x - 48)^2 + 148,000$ where *x* is the age (in years) of the physician. Find the age(s) of the physicians with an income of \$100,000 per year.

Solve the equation by completing the square. Round the solutions to the nearest hundredth.

13. $v^2 = 14 + 16v$ **14.** $2w^2 - 4w - 1 = 0$

Use the quadratic formula to solve the equation. Round the solutions to the nearest hundredth.

15. $6q^2 + 4q = 5q - 2$ **16.** 4d + 2 = (d - 1)(d + 3)

In Exercises 17 and 18, use the following information.

The fuel efficiency *E* (in miles per gallon) for a mid-sized car can be modeled by the equation $E = -0.018v^2 + 1.476v + 3.4$ where *v* is the speed (in miles per hour) of the car.

- **17.** At what speed should the car travel on the highway to get 30 miles per gallon?
- **18.** Does the mid-sized car ever get 35 miles per gallon? If so, at what speed(s)?
- **19.** Give a value of c for which the equation $5x^2 + 10x + c = 0$ has (a) two solutions, (b) one solution, and (c) no solutions.

Tell whether the table of values represents a *linear function*, an *exponential function*, or a *quadratic function*. Then write an equation for the function.

20.

X

y

Copyright © by McDougal Littell, a division of Houghton Mifflin Company.

-2	-1	0	1	2
2	2.5	3	3.5	4

21. x
$$-2$$
 -1 0 1 2
y 3 -3 -5 -3 3

11.	
1 2 .	
13.	
14.	
15.	
16.	
17.	
18. _	
19. .	
-	
20.	
-	
21.	