
Chapter 1 Practice Directions

1. First, we need to create a folder in our student directory to save all of our Python files to.

Click your Windows button in the bottom left corner and search for “This PC”.

2. Click on “This PC” to pull up your Windows Explorer window.

3. Locate your student drive in the menu. Most students have an H: drive. However, some

students have a V: drive. You will see your username attached to your student drive. If

you don’t have a student drive, please let me know. This probably means that we need

to have your student drives pulled over from the Monroe server.

4. Double-click on your H: or V: drive to open it.

5. Click on Home > New Folder to create a new folder.

6. Rename your new folder “vampire_pizza_directory” and then press ENTER.

7. You can close out of your Windows Explorer window after you have made your folder.

8. Using your Windows button menu, find and launch your IDLE program.

IDLE is the integrated development environment associated with Python. It is made up

of a code editor where you type your code along with other helpful tools that allow you to

write, save, and test run programs.

IDLE is designed to recognize Python code, compile Python code, and provide basic

debugging tips to programmers if there are problems with their code.

9. Your IDLE window should look something like this once it has launched.:

On Startup, IDLE will display the Python Shell, which can be used to give commands to

the computer’s operating system. Since we are viewing the shell through IDLE and not

the actual command prompt window, the commands that we type into the Shell will not

communicate directly with our operating system. However, you can type similar

commands in the Python Shell directly from the Python program (not through IDLE) and,

if you have permission to access the operating system’s commands, you can

communicate with the computer’s operating system that way.

In IDLE, the shell is mainly used as a launching screen for other activities that we will do,

like writing code for our game or debugging a file.

10. Go to File > New File to create a new Python file.

11. A blank Python file will open up. You can tell this apart from the Shell because the title

bar will display the file name “untitled” right now because we haven’t saved it yet.

12. Go to File > Save As to save your file.

13. Navigate to your H: or V: drive and select the vampire_pizza_directory folder that you

created earlier. Double-click the folder to open it.

14. Type your new file name in the File Name box. Your new file name is

VampirePizzaAttack.py

15. Click the Save button.

16. You should now notice that your new Python file has been renamed. You will see the

new name in the title bar along the top of the file.

17. We will now begin to code the first part of our game. I like to make my coding window

larger so that I can see all of my code a bit better, but that is a personal decision.

Remember as we move through these exercises that your spelling, capitalization, and

indentation should match. If it doesn’t, your program likely won’t work.

18. Type the following lines of code into your Python file:

1

2
3
4
5

The first and fourth lines contain comments. Anytime you would like to make a note

within your code, you should use a comment. Programming comments always begin

with the pound (#) sign. Comments are typically used to explain what different sections

of code do.

Comments serve two main functions. They allow programmers to quickly find certain

sections of code in order to modify them or locate bugs. They also allow programmers to

pass off their program to another programmer without much hassle. The new

programmers can read the comments left behind by the old programmers to understand

what different portions of the code do.

In this case, the first comment indicates that the following two lines of code will import

the game libraries that we need for this game. The second comment indicates that the

code that follows will initialize the Pygame library.

Line 2 imports the Pygame library. A library is an extra set of commands or methods that

is included with Python that doesn’t automatically import into every Python file. Libraries

were created because Python files were starting to get relatively large and have long

load times, and programmers were trying to find creative solutions to minimize the load

time for Python programmers. By minimizing the commands that are automatically

included in all Python files, load times were improved. Programmers still have the ability

to import different libraries into their program to gain access to some of the commands

that they used to have access to automatically, but with each library import, load time

typically increases. Every library needs to be imported before programmers can access

it or use commands included in it. Please note: In Python, libraries are also called

packages or modules.

Line 3 indicates that you want to import the entire Pygame library into your game. The

asterisk symbol means to import “all”, or to import the entire library. Sometimes, if

programmers only want to use one or two commands from a library, they will only import

those commands instead of the entire library.

Line 5 initializes Pygame. This makes the Pygame library that we imported on Lines 2

and 3 do the initial, behind-the-scenes setup that it needs in order to run. Initializing

variables or objects prepares them to be used by the program for the first time. It is good

practice to initialize every library/module you import to make sure it is up and running at

the start of your program.

19. Press ENTER twice.

20. Type the following code shown on Lines 7 – 13 of the screenshot below.

6

7

8
9
10
11
12
13

Line 7 contains a comment with a bunch of dashes. Whenever you are building a long

program, comments with dashes can serve to separate once section of code from

another and make things easier to find. These types of separations aren’t necessary, but

they do make things easier to find when you have a long document.

Line 8 contains another comment. Eventually, this section will have more constant

variables than just the three that are included in this chapter. We are setting this code up

for that now so we don’t have to go back and edit this later.

Line 9 was left blank just to make things easier to read.

Line 10 contains another comment describing what the constant variables underneath it

do.

Line 11 creates the constant variable called WINDOW_WIDTH and initializes its value

(sets its initial value) to be equal to 900 pixels. Variables are used to store different

pieces of information in the game. Variables are often used when we want to use data

over and over again or when we want to use data that will change. Constant variables

are variables whose values you DO NOT want to change throughout the course of the

game. For this reason, constant variables are usually created in all capital letters. The

capital letters are a way of telling other programmers not to mess with the values of that

particular variable.

Variables can be named virtually anything you want, but cannot include spaces.

However, remember that you have to use the same variable name, with the same

capitalization and spelling, throughout the entire program. It is good practice to make

sure that whatever you name your variable, your name contains some type of

description or indication of what type of data that variable will hold.

So, as a review, the variable on Line 11 is called WINDOW_WIDTH because it contains

the pixel width of the game window. It is also in all capital letters to indicate that it is a

constant variable with a value that should not be changed.

Lines 12 and 13 create two more constant variables: WINDOW_HEIGHT and

WINDOW_RES. The value of the WINDOW_HEIGHT variable is set to 400 pixels. It is

also a constant variable that should not be changed. The value of the WINDOW_RES

variable is set to be the value of the window’s width variable and the window’s height

variable. This will be important later, so we will refer back to Line 13 soon.

21. Press ENTER twice.

22. Type the code that you see on Lines 15 – 20 of the screenshot below. Please note that I

have included Lines 13-14 in the screenshot also, but you have already typed these in

previous steps. I just wanted to make sure you knew where in the code you should be

working.

13

14

15
16
17
18
19
20

Line 15 contains another comment separator to separate the next code into another

section.

Line 16 contains a comment explaining that we are going to load game assets in this

section. We will eventually be loading more assets on this page, so we are setting up the

code structure now so that it will make more sense to use in the future.

Line 17 is a blank line.

Line 18 contains a comment explaining that the code below it will create the game

window.

Line 19 creates a new constant variable called GAME_WINDOW and sets its value to be

the result of the display.set_mode method that uses the WINDOW_RES argument. The

display.set_mode method creates a display Surface using the arguments it is given in

the parentheses. In this case, the display.set_mode method creates a game window and

assigns that window’s size to the GAME_WINDOW variable. The window’s size (its

width and its height) is equal to the value of the WINDOW_RES variable. Remember

you set the WINDOW_RES variable on Line 13 to be equal to the window’s height and

the window’s width variable values.

Line 20 changes the title of the display window to whatever argument you give it in the

parentheses. In this case, the title of the display window will be “Attack of the Vampire

Pizzas!”.

23. Press ENTER twice.

24. Type the code that you see on Lines 22 - 27 in the following screenshot:

20

21

22
23
24
25
26
27

Line 22 contains another comment separator to separate the next code into another

section.

Line 23 contains a comment explaining that we are going to start the main game loop in

this section of code.

Line 24 is blank.

Line 25 indicates that the code that follows is the game loop code, which is what the

game will loop through until it is stopped.

Line 26 creates a variable called game_running and sets its value to be True. Notice that

this variable is in lowercase letters, meaning that this is not a constant variable. When

variables are in lowercase letters or are not constant, their values can (and most likely

will) change throughout the course of the game. In this case, we will change the value of

the game_running variable to either True or False throughout the game to indicate

whether the game is currently running or being played.

Line 27 begins a while loop. The code under this while loop will execute while the

game_running variable is equal to True. This is a bit confusing, but whenever you see

something like “while running:” or “while y” or anything else, that means that the code

underneath it will execute if that particular variable is set to True. If it isn’t, this block of

code (the code under the while loop) will be skipped. So, in other words, as long as the

game_running variable is set to True, the code under Line 27 will loop continuously.

When the value of the game_running variable changes to False, that loop will end.

As a final note, make sure you have your colon at the end of Line 27. The loop will not

program correctly if the colon is missing.

25. Press ENTER twice.

26. Type the code that you see on Lines 29 - 36 of the following screenshot:

27

28

29
30
31
32

33

34
35

36

Line 29 contains another comment separator.

Line 30 contains a comment explaining that this section of code will check for events.

Events are things that can happen in a game. Things like button presses and quitting the

game are events. In this section of code, we will be programming behaviors that happen

when certain events take place.

Line 31 is a blank line.

Line 32 contains a comment explaining that the code in the following section will check

for and handle any events that happen in the game.

Line 33 creates a loop checks for any events that have occurred in the game. Python will

register all events from the user into an event queue which can be accessed using the

pygame.event.get() method. Every element in this queue is an event object. Line 33

creates a “for” loop that will check for and execute each event in the event queue.

Line 34 creates another comment explaining what the code in Lines 35 and 36 will do.

Line 35 creates an if function that checks to see if the event.type is equal to the value of

QUIT. Python has a variety of events that it generates based on different actions the

user takes. One of the major events it uses is the QUIT event. The QUIT event is

generated whenever the user closes out of the Pygame window or whenever the game

asks to be closed. If the user closes out of the Pygame window or the system asks to

close, the QUIT event is generated in the event queue, which is then picked up by the

pygame.event.get(): method.

On Line 36, you see the what will happen if the event.type==QUIT (Line 35) is detected

in the event queue. If the event type is NOT EQUAL to QUIT, this line (Line 36) will be

skipped and the program will continue on to the next line. If the event type is equal to

QUIT, the game_running variable will be changed to False.

Please take note of the indentation used in the screenshot above. The indentation is

very important.

27. Press ENTER twice.

28. Type the code that you see on Lines 38 – 42 of the screenshot below. Again, indentation

is important.

36

37

38
39
40
41

42

Line 38 contains another comment separator.

Line 39 contains a comment describing what the following code does.

Line 40 will execute the display.update() method. This method updates the user’s

window/surface display to match the actions/changes that the computer has made.

Line 41 contains a blank line.

Line 42 contains a comment explaining that this is the end of the main game loop code.

29. Press ENTER once.

30. Type the code that you see on Lines 43 - 46 of the screenshot below.

42

43

44
45
46

Line 43 contains a comment separator.

Line 44 is blank.

Line 45 contains a comment explaining that the code below it will clean up and close out

of the game.

Line 46 exits pygame and closes out of the game window. This function will only run

after the game loop has stopped running.

31. Go to File > Save.

32. At this point, you will not be able to see anything in your game window when you

preview this program. For now, after you have saved your code you can close out of the

Python file. You can also close out of the Python Shell if you still have it open.

Final Code:

