CHAPTER 1 – POINTS, LINES, PLANES, AND ANGLES

Objectives/Goals

1-2 – Points, Lines, Planes

Use undefined terms point, line, and plane. Draw representations of points, lines, and planes. Use the terms collinear, coplanar, and intersection.

1-3 – Segments, Rays, and Distance

Use symbols for lines, segments, rays, and distances. Find distances. State and use the Ruler Postulate and the Segment Addition Postulate.

1-4 – Angles

Name angles and find their measures, State and use the Angle Addition Postulate. Recognize what can be concluded from a diagram.

1-5 - Postulates and theorems Relating Points, Lines, and Planes

Use postulates and theorems relating points, lines, and planes

Essential Questions

1.) What are the basic geometric building blocks and how are they characterized?

- 2.) What is the segment addition postulate?
- 3.) What are angles and how are they measured?
- 4.) What is the angle addition postulate?
- 5.) What is the key difference between a postulate and a theorem?
- 6.) What are the ways to classify angles according to their measures?

Chapter 1 terms to know

Point Line Plane Space Collinear points Coplanar points Non-collinear points Non-coplanar points Intersection Segments Rays Postulates Endpoint Line segment Ray Opposite rays Coordinate Length Congruent Midpoint of segment Bisector of a segment Angle Sides of an angle Vertex of an angle Acute Right Obtuse Straight angle Adjacent Bisector of an angle Theorems Existence Uniqueness

CHAPTER 1

Postulate 1 – Ruler Postulate

1. The points on a line can be paired with the real numbers in such a way that

any two points can have coordinates 0 and 1.

2. Once a coordinate system has been chosen in this way, the distance between any two points equals the absolute value of the difference of their

coordinates.

Postulate 2 – Segment Addition Postulate – If B is between A and C, then AB + BC = AC.

Postulate 3 – Protractor Postulate – On AB in a given plane, choose any point O between A

and B. Consider OA and OB and all the rays that can be drawn from O on one side of AB. These rays can be paired with the real numbers from 0 to 180 in such a way that:

- a) OA is paired with 0 and OB with 180.
- b) If OP is paired with x, and OQ with y, then m < POQ = |x y|.
- Postulate 4 Angle Addition Postulate If point B lies in the interior of <AOC, then m<AOB + m<BOC = m<AOC. If <AOC is a straight angle and B is any point not on AC, then m<AOB + m<BOC = 180.
- Postulate 5 A line contains at least two points; a plane contains at least three points not all in one line; space contains at least four points not all in one plane.
- Postulate 6 Through any two points there is exactly one line.
- Postulate 7 Through any three points there is at least one plane, and through any three noncollinear points there is exactly one plane.
- Postulate 8 If two points are in a plane, then the line that contains the points is in that plane.
- Postulate 9 If two planes intersect, then their intersection is a line
- Theorem 1-1 If two lines intersect, then they intersect in exactly one point.
- Theorem 1-2 Through a line and a point not in the line there is exactly one plane.
- Theorem 1-3 If two lines intersect, then exactly one plane contains the lines.