

Aerobic Respiration – Equation

$C_6H_{12}O_6 + \underline{\mathbf{6}} O_2 \longrightarrow \underline{\mathbf{6}} H_2O + \underline{\mathbf{6}} CO_2 + 36 ATP$

food oxygen water (glucose, a carbohydrate)

Does this look familiarf

energy

molecule

carbon

dioxide

The BIG Question is...

Do only animals respire? Or do plants respire too?

Only plants perform photosynthesis
 Plants AND animals perform cellular respiration!

(Can you explain why??)

Energy Review

Energy Storing Molecules

ATP, NADPH (NAD⁺), FADH (FAD⁺), FADH₂

@ATP supplies most of the energy that drives metabolism in living things@

ATP releases energy when converted into ADP

Cellular Respiration Overview Chapter 9-1

Living things get most of the energy they need from glucose.

- Autrotrophs make glucose using photosynthesis
- Heterotrophs get glucose from food they eat

Cellular Respiration

The process that releases energy by breaking down glucose and other food molecules in the presence of oxygen.

Cellular Respiration Overview

- Cellular Respiration Overall Equation
 6O₂ + C₆H₁₂O₆ → 6CO₂ + 6H₂O + Energy
 Three Stages
 - 1. Glycolysis
 - 2. Kreb's Cycle
 - 3. Electron Transport Chain
 - The Main form of Energy produced

Glycolysis

- Glyco = Glucose lysis = Breakdown
- Occurs in the cytoplasm of the cell
- Molecules of GLUCOSE are broken down into 2 molecules of Pyruvic Acid.@
- Cell must use (invest) 2 ATP
- Produces Energy Carrier Molecules
 - 4 ATP
 - 2 NADH

Glycolysis
http://highered.mcgraw- hill.com/sites/0072507470/student_view0/c hapter25/animationhow_glycolysis_work s.html

The "Mighty" Mitochondria

- @The mitochondria is the organelle where the final stages of cellular respiration occurs.@
 - Kreb's Cycle
 - Electron Transport Chain
- Cells that use a lot of energy have high numbers of mitochondria.
 - Example: Muscle cells in the heart!!

Kreb's Cycle Chapter 9-2

- Aerobic Process =Only if oxygen is present!@
- Occurs in the MATRIX of the mitochondria
- Pyruvic Acid from Glycolysis enters to form
 - 1 ATP
 - 3 NADH
 - 1 FADH₂

 \mathbf{I} \mathbf{CO}_2 (which is released when we exhale!!)

AKA....Citric Acid Cycle

Electron Transport Chain Chapter 9-2

- Energy carrier molecules produced during Glycolysis and the Kreb's Cycle enter the ETC
 - NADH
 - FADH₂
- Occurs in the folds of the Inner Membrane of the Mitochondria (Cristae)
- The electrons are passed down a chain of proteins until they reach the final electron acceptor....oxygen!

So this step is aerobic (requires oxygen)

@The ETC produces 32 ATP and H₂O@

Electron Transport Chain
<u>http://highered.mcgraw-hill.com/sites/0072507470/student_view0/chapter25/animation_electron_transport_system_and_atp_synthesis_quiz_1html</u>

The chain then repeats in the same way with $FADH_2$

NO OXYGEN

What happens if

is available??

A lot of people run a race to who is fastest. I run to see wh has the most cuts."

The Kreb's Cycle and Electron Transport Chain can't function!!

These are anaerobic conditions!!

2 Types of Fermentation

Alcoholic Fermentation

- Yeasts use this process to form ethyl alcohol and carbon dioxide as waste products.
 - This causes bread dough to rise
 - This is how some alcoholic beverages are made

Pyruvic Acid + NADH \rightarrow alcohol + CO₂ + NAD+

Lactic Acid Fermentation

Occurs in bacteria (unicellular organisms)

- This is how cheese, yogurt, and pickles are made.
- Occurs in muscles during rapid exercise
 - When your body runs out of oxygen your muscle cells must produce some ATP using fermentation and glycolysis

Lactic Acid build-up causes muscle soreness or burning after intense activity.

Pyruvic Acid + NADH \rightarrow lactic acid + NAD+

Comparing ATP Production

- First, your body breaks down glucose through aerobic respiration to produce 36 ATP per glucose molecule; however, this is a slow process.
- When muscle cells cannot get enough O₂ they break down glucose through lactic acid fermentation to produce 2 ATP per glucose...
- @Therefore, AEROBIC RESPIRATION is much more efficient in terms of ATP production @– 36 ATP compared to 2 ATP!

Where is glycolysis performed in the cell and what does it produce?

- In the cytoplasm
- 4 ATP
- 2 NADPH
- Makes pyruvate (pyruvic acid)

Where does the Kreb's cycle occur and does it use oxygen?

Matrix of the mitochondria

Aerobic process

If no oxygen is present after glycolysis, what process occurs? Is this a more efficient pathway?

- Fermentation
- No, aerobic makes 36 ATP whereas anaerobic makes 2ATP.