Warm Up

Find the unknown side lengths in each special right triangle.

- **1.** a 30°-60°-90° triangle with hypotenuse 2 ft 1 ft; $\sqrt{3}$ ft
- **2.** a 45°-45°-90° triangle with leg length 4 in. 4 in; $4\sqrt{2}$ in.
- **3.** a 30°-60°-90° triangle with longer leg length 3m $\sqrt{3}$ m; $2\sqrt{3}$ m

Develop and apply the formulas for the area and circumference of a circle.

Develop and apply the formula for the area of a regular polygon.

Holt Geometry

A <u>circle</u> is the locus of points in a plane that are a fixed distance from a point called the <u>center of the</u> <u>circle</u>. A circle is named by the symbol \odot and its center. $\odot A$ has radius r = AB and diameter d = CD.

The irrational number π is defined as the ratio of the circumference *C* to the diameter *d*, or $\pi = \frac{C}{d}$.

Solving for *C* gives the formula $C = \pi d$. Also d = 2r, so $C = 2\pi r$.

Example 1A: Finding Measurements of Circles Find the area of $\odot K$ in terms of π .

$$A = \pi r^2$$
 Area of a circle.

 $A = \pi(3)^2$ Divide the diameter by 2 to find the radius, 3.

 $A = 9\pi \text{ in}^2$ Simplify.

Example 1B: Finding Measurements of Circles

- Find the radius of $\odot J$ if the circumference is $(65x + 14)\pi m$.
- $C = 2\pi r$ Circumference of a circle $(65x + 14)\pi = 2\pi r$ Substitute $(65x + 14)\pi$ for C.r = (32.5x + 7) mDivide both sides by 2π .

Example 1C: Finding Measurements of Circles

Find the circumference of $\odot M$ if the area is 25 $x^2 \pi$ ft²

Step 1 Use the given area to solve for *r*.

 $A = \pi r^2$ Area of a circle $25x^2\pi = \pi r^2$ Substitute $25x^2\pi$ for A. $25x^2 = r^2$ Divide both sides by π .5x = rTake the square root of both sides.

Example 1C Continued

Step 2 Use the value of *r* to find the circumference.

Holt Geometry

Example 2: Cooking Application

A pizza-making kit contains three circular baking stones with diameters 24 cm, 36 cm, and 48 cm. Find the area of each stone. Round to the nearest tenth.

- 1. The <u>center of a regular polygon</u> is equidistant from the vertices.
- 2. The **apothem** is the distance from the center to a side.
- 3. A <u>central angle of a regular polygon</u> has its vertex at the center, and its sides pass through consecutive vertices.
- a. Each central angle measure of a regular *n*-gon is $\frac{360^{\circ}}{n}$

Regular pentagon *DEFGH* has a center *C*, apothem *BC*, and central angle $\angle DCE$.

To find the area of a regular *n*-gon with side length *s* and apothem *a*, divide it into *n* congruent isosceles triangles.

area of each triangle: $\frac{1}{2}as$ total area of the polygon: $A = n\left(\frac{1}{2}as\right)$, or $A = \frac{1}{2}aP$ The perimeter is P = ns.

Area Regular Polygon

The area of a regular polygon with apothem a and perimeter P is $A = \frac{1}{2}aP$.

Holt Geometry

Example 3A: Finding the Area of a Regular Polygon

Find the area of regular heptagon with side length 2 ft to the nearest tenth.

Step 1 Draw the heptagon. Draw an isosceles triangle with its vertex at the center of the heptagon. The central angle is $\frac{360^{\circ}}{7} \approx 51.4^{\circ}$.

Draw a segment that bisects the central angle and the side of the polygon to form a right triangle.

Example 3A Continued

Step 2 Use the tangent ratio to find the apothem.

$$\tan(25.7^{\circ}) = \frac{1}{a}$$
 The tangent of an angle is $\frac{opp. \ leg}{adj. \ leg}$
$$a = \frac{1}{\tan(25.7^{\circ})}$$
 Solve for a.

Example 3A Continued

Step 3 Use the apothem and the given side length to find the area.

Example 3B: Finding the Area of a Regular Polygon

Find the area of a regular dodecagon with side length 5 cm to the nearest tenth.

Step 1 Draw the dodecagon. Draw an isosceles triangle with its vertex at the center of the dodecagon. The central angle is $\frac{360^{\circ}}{12} = 30^{\circ}$.

Draw a segment that bisects the central angle and the side of the polygon to form a right triangle.

Example 3B Continued

Step 2 Use the tangent ratio to find the apothem.

Holt Geometry

Example 3B Continued

Step 3 Use the apothem and the given side length to find the area.

 $A \approx 279.9 \text{ cm}^2$

Simplify. Round to the nearest tenth.

Lesson Quiz: Part I

Find each measurement.

1. the area of $\bigcirc D$ in terms of π

2. the circumference of $\odot T$ in which $A = 16\pi$ mm² $C = 8\pi$ mm

Lesson Quiz: Part II

Find each measurement.

3. Speakers come in diameters of 4 in., 9 in., and 16 in. Find the area of each speaker to the nearest tenth.

$A_1 \approx 12.6 \text{ in}^2$; $A_2 \approx 63.6 \text{ in}^2$; $A_3 \approx 201.1 \text{ in}^2$

Find the area of each regular polygon to the nearest tenth.

4. a regular nonagon with side length 8 cm $A \approx 395.6 \text{ cm}^2$

5. a regular octagon with side length 9 ft

 $A \approx 391.1 \, {\rm ft}^2$

homework **Re-teach** Worksheets 9-2

Holt Geometry