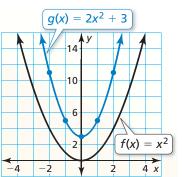

Chapter Review

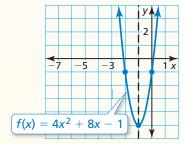

- Draw a smooth curve through the points. Step 3
- Both graphs open up and have the same axis of symmetry, x = 0. The graph of g is narrower, and its vertex, (0, 3), is above the vertex of the graph of f, (0, 0). So, the graph of g is a vertical stretch by a factor of 2 and a vertical translation 3 units up of the graph of f.

Graph the function. Compare the graph to the graph of $f(x) = x^2$.

6. $g(x) = x^2 + 5$ **7.** $h(x) = -x^2 - 4$ **8.** $m(x) = -2x^2 + 6$ **9.** $n(x) = \frac{1}{3}x^2 - 5$

470

Chapter 8



8.3 Graphing $f(x) = ax^2 + bx + c$ (pp. 431–438)

Graph $f(x) = 4x^2 + 8x - 1$. Describe the domain and range.

- **Step 1** Find and graph the axis of symmetry: $x = -\frac{b}{2a} = -\frac{8}{2(4)} = -1$.
- Step 2 Find and plot the vertex. The axis of symmetry is x = -1. So, the *x*-coordinate of the vertex is -1. The *y*-coordinate of the vertex is $f(-1) = 4(-1)^2 + 8(-1) 1 = -5$. So, the vertex is (-1, -5).
- **Step 3** Use the *y*-intercept to find two more points on the graph. Because c = -1, the *y*-intercept is -1. So, (0, -1) lies on the graph. Because the axis of symmetry is x = -1, the point (-2, -1) also lies on the graph.

Step 4 Draw a smooth curve through the points.

Graph the function. Describe the domain and range.

The domain is all real numbers. The range is $y \ge -5$.

10.
$$y = x^2 - 2x + 7$$
 11. $f(x) = -3x^2 + 3x - 4$ **12.** $y = \frac{1}{2}x^2 - 6x + 10$

13. The function $f(t) = -16t^2 + 88t + 12$ represents the height (in feet) of a pumpkin t seconds after it is launched from a catapult. When does the pumpkin reach its maximum height? What is the maximum height of the pumpkin?

8.4 Graphing $f(x) = a(x - h)^2 + k$ (pp. 441–448)

Determine whether $f(x) = 2x^2 + 4$ is even, odd, or neither.

$f(x) = 2x^2 + 4$	Write the original function.
$f(-x) = 2(-x)^2 + 4$	Substitute $-x$ for x .
$= 2x^2 + 4$	Simplify.
= f(x)	Substitute $f(x)$ for $2x^2 + 4$.

Because f(-x) = f(x), the function is even.

Determine whether the function is even, odd, or neither.

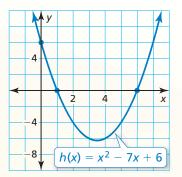
14. $w(x) = 5^x$ **15.** r(x) = -8x **16.** $h(x) = 3x^2 - 2x$

Graph the function. Compare the graph to the graph of $f(x) = x^2$.

17. $h(x) = 2(x-4)^2$ **18.** $g(x) = \frac{1}{2}(x-1)^2 + 1$ **19.** $q(x) = -(x+4)^2 + 7$

20. Consider the function $g(x) = -3(x + 2)^2 - 4$. Graph h(x) = g(x - 1).

21. Write a quadratic function whose graph has a vertex of (3, 2) and passes through the point (4, 7).


8.5 Using Intercept Form (pp. 449–458)

Use zeros to graph $h(x) = x^2 - 7x + 6$.

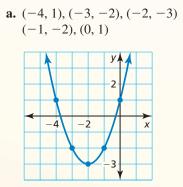
The function is in standard form. The parabola opens up (a > 0), and the y-intercept is 6. So, plot (0, 6).

The polynomial that defines the function is factorable. So, write the function in intercept form and identify the zeros.

$h(x) = x^2 - 7x + 6$	Write the function.
= (x - 6)(x - 1)	Factor the trinomial.

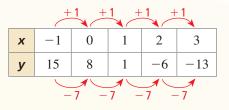
The zeros of the function are 1 and 6. So, plot (1, 0) and (6, 0). Draw a parabola through the points.

Graph the quadratic function. Label the vertex, axis of symmetry, and x-intercepts. Describe the domain and range of the function.


22. $y = (x - 4)(x + 2)$	23. $f(x) = -3(x+3)(x+1)$	24. $y = x^2 - 8x + 15$
Use zeros to graph the function.		

- **25.** $y = -2x^2 + 6x + 8$ **26.** $f(x) = x^2 + x 2$ **27.** $f(x) = 2x^3 18x$
- **28.** Write a quadratic function in standard form whose graph passes through (4, 0) and (6, 0).

8.6 Comparing Linear, Exponential, and Quadratic Functions (pp. 459–468)


b.

Tell whether the data represent a *linear*, an *exponential*, or a *quadratic* function.

The points appear to represent a quadratic function.

х -10 2 3 1 15 8 1 -6-13y

The first differences are constant. So, the table represents a linear function.

- **29.** Tell whether the table of values represents a *linear*, an *exponential*, or *a quadratic* function. Then write the function.
- 2 3 -10 1 Х 8 2 512 128 32 У
- **30.** The balance y (in dollars) of your savings account after t years is represented by $y = 200(1.1)^t$. The beginning balance of your friend's account is \$250, and the balance increases by \$20 each year. (a) Compare the account balances by calculating and interpreting the average rates of change from t = 2 to t = 7. (b) Predict which account will have a greater balance after 10 years. Explain.