

CHAPTER Solutions Key

Similarity

ARE YOU READY? PAGE 451

1. F

2. F

3. B

4. D

- **6.** $\frac{16}{20} = \frac{4(4)}{4(5)} = \frac{4}{5}$ **7.** $\frac{14}{21} = \frac{7(2)}{7(3)} = \frac{2}{3}$
- **8.** $\frac{33}{121} = \frac{11(3)}{11(11)} = \frac{3}{11}$ **9.** $\frac{56}{80} = \frac{8(7)}{8(10)} = \frac{7}{10}$
- **10.** 18 to 24 6(3) to 6(4) 3 to 4
- 11. 34 to 18 2(17) to 2(9) 17 to 9
- **12.** Total # of CDs is: 36 + 18 + 34 + 24 = 11236 to 112 4(9) to 4(28)
 - 13. 112 to 24 8(14) to 8(3) 14 to 3
- 9 to 28 14. yes; pentagon
- 15. yes; hexagon

16. no

- 17. yes; octagon
- **18.** $P = 2\ell + 2w$ = 2(8.3) + 2(4.2)= 25 ft
- **19.** P = 6s= 6(30) = 180 cm
- **20.** P = 4s= 4(11.4) = 45.6 m
- **21.** P = 5s= 5(3.9) = 19.5 in.

7-1 RATIO AND PROPORTION, **PAGES 454-459**

CHECK IT OUT! PAGES 454-456

- 1. slope = $\frac{\text{rise}}{\text{run}} = \frac{y_2 y_1}{x_2 x_1}$ = $\frac{5 3}{6 (-2)}$ = $\frac{2}{8} = \frac{1}{4}$
- **2.** Let \angle measures be x, 6x, and 13x. Then x + 6x + 13x = 180. After like terms are combined, 20x = 180. So x = 9. The \angle measures are $x = 9^{\circ}$, $6x = 6(9) = 54^{\circ}$, and $13x = 13(9) = 117^{\circ}$.
- 3(56) = x(8)168 = 8xx = 21
- 2y(4y) = 9(8) $8y^2 = 72$ $y^2 = 9$
- **c.** $\frac{d}{3} = \frac{6}{2}$ d(2) = 3(6)2d = 18d = 9
- $\frac{x+3}{4} = \frac{9}{x+3}$ (x+3)(x+3) = 4(9) $x^2 + 6x + 9 = 36$ $x^2 + 6x 27 = 0$ (x-3)(x+9)=0x = 3 or -9

- **4.** 16s = 20t
- 5. 1 Understand the Problem

Answer will be height of new tower.

2 Make a Plan

Let y be height of new tower. Write a proportion that compares the ratios of model height to actual

height of 1st tower height of new tower height of 1st model height of new model $\frac{1328}{8} = \frac{y}{9.2}$

3 Solve

$$\frac{1328}{8} = \frac{y}{9.2}$$

$$1328(9.2) = 8(y)$$

$$12,217.6 = 8y$$

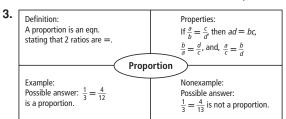
$$y = 1527.2 \text{ m}$$

4 Look Back

Check answer in original problem. Ratio of actual height to model height is 1328:8, or 166:1. Ratio of actual height to model height for new tower is 1527.2:9.2 In simplest form, this ratio is also 166:1. So ratios are equal, and answer is correct.

THINK AND DISCUSS, PAGE 457

- **1.** No; ratio 6:7 is < 1, but ratio 7:6 is > 1.
- 2. She can see if cross products are =. Since 3(28) = 7(12), ratios do form a proportion. Therefore ratios are = and fractions are equivalent.



EXERCISES, PAGES 457-459 GUIDED PRACTICE, PAGE 457

- 1. means: 3 and 2; extremes: 1 and 6
- 3. slope = $\frac{\text{rise}}{\text{run}} = \frac{y_2 y_1}{x_2 x_1}$ 4. slope = $\frac{\text{rise}}{\text{run}} = \frac{y_2 y_1}{x_2 x_1}$ = $\frac{4 3}{1 (-1)} = \frac{1}{2}$ = $\frac{2 (-2)}{2 (-2)}$ = $\frac{4}{4} = \frac{1}{1}$

5. slope =
$$\frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{-1 - 1}{2 - (-1)}$
= $\frac{-2}{3} = -\frac{2}{3}$

- **6.** Let side lengths be 2x, 4x, 5x, and 7x. Then 2x + 4x + 5x + 7x = 36. After like terms are combined, 18x = 36. So x = 2. The shortest side measures 2x = 2(2) = 4 m.
- 7. Let \angle measures be 5x, 12x, and 19x. Then 5x + 12x + 19x = 180. After like terms are combined, 36x = 180. So x = 5. The largest \angle measures $19x = 19(5) = 95^{\circ}$.

8.
$$\frac{x}{2} = \frac{40}{16}$$
 9. $\frac{7}{y} = \frac{21}{27}$ $x(16) = 2(40)$ $7(27) = y(21)$ $16x = 80$ $189 = 21y$ $y = 9$

10.
$$\frac{6}{58} = \frac{t}{29}$$
 11. $\frac{y}{3} = \frac{27}{y}$ 6(29) = 58(t) $y(y) = 3(27)$ 174 = 58t $y^2 = 81$ $y = \pm 9$

12.
$$\frac{16}{x-1} = \frac{x-1}{4}$$

$$16(4) = (x-1)(x-1)$$

$$64 = x^2 - 2x + 1$$

$$0 = x^2 - 2x - 63$$

$$0 = (x-9)(x+7)$$

$$x = 9 \text{ or } -7$$

$$13. \qquad \frac{x^2}{18} = \frac{x}{6}$$

$$x^2(6) = 18(x)$$

$$6x^2 - 18x = 0$$

$$6x(x-3) = 0$$

$$x = 0 \text{ or } 3$$

16. 1 Understand the Problem

Answer will be height of Arkansas State Capitol.

2 Make a Plan

Let *x* be height of Arkansas State Capitol. Write a proportion that compares the ratios of height to width

$$\frac{\text{height of U.S. Capitol}}{\text{width of U.S. Capitol}} = \frac{\text{height of Arkansas Capitol}}{\text{width of Arkansas Capitol}}$$

$$\frac{288}{752} = \frac{x}{564}$$

3 Solve

$$\frac{288}{752} = \frac{x}{564}$$

$$288(564) = 752(x)$$

$$162,432 = 752x$$

$$x = 216 \text{ ft}$$

4 Look Back

Check answer in original problem. Ratio of height to width for U.S. Capitol is 288:752, or 18:47. Ratio of height to width for Arkansas State Capitol is 216:564 In simplest form, this ratio is also 18:47. So ratios are equal, and answer is correct.

PRACTICE AND PROBLEM SOLVING, PAGES 458-459

17. slope =
$$\frac{4-1}{1-0} = \frac{3}{1}$$
 18. slope = $\frac{-4+1}{3-0} = -\frac{1}{1}$
19. slope = $\frac{0+3}{3-1} = \frac{3}{3}$

$$4x + 4x + 7x = 52.5$$
$$15x = 52.5$$
$$x = 3.5$$

length of base = 7(3.5) = 24.5 cm

21. Let \angle measures be 2x, 3x, 2x, and 3x. By Quad. \angle Sum Thm., sum of \angle measures is 360°.

$$2x + 3x + 2x + 3x = 360$$
$$10x = 360$$
$$x = 36$$

 \angle measures are 2(36) = 72°, 3(36) = 108°, 72°, and 108°.

22.
$$\frac{6}{8} = \frac{9}{y}$$
 23. $\frac{x}{14} = \frac{50}{35}$ $6y = 8(9) = 72$ $y = 12$ $x = 20$

24.
$$\frac{z}{12} = \frac{3}{8}$$

8z = 12(3) = 36
z = 4.5

25.
$$\frac{2m+2}{3} = \frac{12}{2m+2}$$
$$(2m+2)^2 = 3(12)$$
$$4m^2 + 8m + 4 = 36$$
$$4m^2 + 8m - 32 = 0$$
$$m^2 + 2m - 8 = 0$$
$$(m-2)(m+4) = 0$$
$$m = 2 \text{ or } -4$$

26.
$$\frac{5y}{16} = \frac{125}{y}$$

 $5y^2 = 16(125)$
 $5y^2 = 2000$
 $y^2 = 400$
 $y = \pm 20$
27. $\frac{x+2}{12} = \frac{5}{x-2}$
 $(x+2)(x-2) = 12(5)$
 $x^2 - 4 = 60$
 $x^2 = 64$
 $x = \pm 8$

28.
$$5y = 25x$$
 29. $35b = 21c$ $\frac{5}{25} = \frac{x}{y}$ $\frac{x}{y} = \frac{1}{5}$ Ratio is 3:5.

30. Let x represent height of actual windmill. $\frac{\text{height of windmill}}{\text{width of windmill}} = \frac{\text{height of model}}{\text{width of model}}$ $\frac{x}{20} = \frac{1.2}{0.8}$ 0.8x = 20(1.2) = 24 x = 30 m

31.
$$\frac{a}{b} = \frac{5}{7}$$
 $7a = 5b$ $7a = 5b$ $7a = \frac{5b}{a}$ $7a = \frac{5b}{a}$

33.
$$\frac{a}{b} = \frac{5}{7}$$

$$7a = 5b$$

$$\frac{7a}{5} = b$$

$$\frac{a}{5} = \frac{b}{7}$$

34. Cowboys lost

$$16 - 10 = 6$$
 games.
wins:losses = $10:6$
= $\frac{10.6}{2}$: $\frac{1}{2}$
= $5:3$

35. slope =
$$\frac{5+4}{21+6}$$

= $\frac{9}{27} = \frac{1}{3}$

35. slope =
$$\frac{5+4}{21+6}$$
 36. slope = $\frac{1+5}{6-16}$ = $\frac{9}{27} = \frac{1}{3}$ = $\frac{6}{-10} = -\frac{3}{5}$

37. slope =
$$\frac{5.5 + 2}{4 - 6.5}$$

= $\frac{7.5}{-2.5}$ = -3

38. slope =
$$\frac{0-1}{-2+6} = -\frac{1}{4}$$

39a.
$$\frac{1.25 \text{ in.}}{15 \text{ in.}} = \frac{x \text{ in.}}{9600 \text{ in.}}$$

b.
$$1.25(9600) = 15x$$

 $12,000 = 15x$
 $x = 800 \text{ in.}$
 $x = 66 \text{ ft } 8 \text{ in.}$

- **40.** Quad. is a rect. because opp. sides are \cong and diags. are ≅.
- **41.** Areas are $6^2 = 36 \text{ cm}^2$ and $9^2 = 81 \text{ cm}^2$.

42.
$$\frac{5}{3.5} = \frac{20}{w}$$

 $5w = 3.5(20) = 70$
 $w = 14$ in.

43. A ratio is a comparison of 2 numbers by div. A proportion is an eqn. stating that 2 ratios are =.

TEST PREP, PAGE 459

44. B

$$x + 4x + 5x = 18$$

 $10x = 18$
 $x = 1.8 \text{ in.}$
 $4x = 4(1.8) = 7.2 \text{ in.},$
 $5x = 5(1.8) = 9 \text{ in.}$
45. H
 $\frac{3}{5} = \frac{x}{y}$
 $3y = 5x$
 $y = \frac{5x}{3}$
 $\frac{y}{5} = \frac{x}{3}$

46. A
$$\frac{5}{2} = \frac{1.25}{v}$$
 $5v = 2(1.25) = 2.5$ $v = \frac{1}{2}$

47. First, cross multiply: 36x = 15(72) = 1080Then divide both sides by 36: $\frac{36x}{36} = \frac{1080}{36}$ Finally, simplify: x = 30You must assum that $x \neq 0$.

CHALLENGE AND EXTEND, PAGE 459

48. Perimeters are
$$2(3) + 2(5) = 16$$

and $2x + 2(4) = 2x + 8$.

$$\frac{4}{7} = \frac{16}{2x + 8}$$

$$4(2x + 8) = 7(16)$$

$$8x + 32 = 112$$

$$8x = 80$$

$$x = 10$$

- **49.** Given $\frac{a}{b} = \frac{c}{a'}$, add 1 to both sides of eqn: Adding fractions on both sides of eqn. gives $\frac{a+b}{b} = \frac{c+d}{d}$.
- **50.** Possible proportions are $\frac{1}{2} = \frac{3}{6}$, $\frac{1}{3} = \frac{2}{6}$, $\frac{2}{1} = \frac{6}{3}$ $\frac{2}{6} = \frac{1}{3}, \frac{3}{1} = \frac{6}{2}, \frac{3}{6} = \frac{1}{2}, \frac{6}{2} = \frac{3}{1}, \text{ and } \frac{6}{3} = \frac{2}{1}.$ There are 8 possible proportions. Total number of outcomes = 4! = 24. Probability = $\frac{8}{24} = \frac{1}{3}$

51.
$$\frac{x^2 + 9x + 18}{x^2 - 36} = \frac{(x+6)(x+3)}{(x+6)(x-6)}$$
$$= \frac{x+3}{x-6}, \text{ where } x \neq \pm 6$$

SPIRAL REVIEW, PAGE 459

52. y - 6(0) = -3

$$y = -3$$
54. $y - 6(-4) = -3$

$$y + 24 = -3$$

$$y = -27$$

$$x = 1$$
54. $y - 6(-4) = -3$
 $y + 24 = -3$
 $y = -27$
55. Think: Use Same-Side
Ext. $\&$ Thm. to find y ,
then use Vert. $\&$ Thm.
 $3y + 2y + 20 = 180$
 $5y = 160$
 $y = 32$
 $m∠ABD = 3y$
 $= 3(32) = 96°$

-6x = -6

53. (3) -6x = -3

56. Think: Use Vert.
$$\triangle$$
 Thm. **57.** $9^2 \stackrel{?}{=} 5^2 + 8^2$ m∠*CDB* = $2y + 20$ 81 $\stackrel{?}{=} 25 + 64$ = $2(32) + 20$ 81 < 89 \triangle is acute.

58.
$$20^2 \stackrel{?}{=} 8^2 + 15^2$$
 59. $25^2 \stackrel{?}{=} 7^2 + 24^2$ $400 \stackrel{?}{=} 64 + 225$ $625 \stackrel{?}{=} 49 + 576$ $625 = 625$ \triangle is obtuse. \triangle is a right triangle.

TECHNOLOGY LAB: EXPLORE THE GOLDEN RATIO, PAGES 460-461

ACTIVITY 1

- 1. Check students' work. The equal ratios have the approximate value of 1.62.
- 2. The ratios have the same value as the ratios in Step 1.

TRY THIS, PAGE 461

1. If side length of square is 2 units, then MB = 1 unit and BC = 2 units. \overline{MC} is hyp. of rt. \triangle formed by \overline{MB} and \overline{BC} . By Pyth. Thm.,

$$MC = \sqrt{5}$$
 units
 $AE = \sqrt{5} + 1$ units
 $\frac{AE}{FF} = \frac{\sqrt{5} + 1}{2} \approx 1.618$

2.
$$BE = \sqrt{5} - 1$$
 units
$$\frac{BE}{EF} = \frac{\sqrt{5} - 1}{2} \approx 0.618$$

The sign of the numerator in this fraction is different from that of the fraction in Try This Problem 1.

- 3. Quotients have values that approach 1.618.
- 4. There are 1 + 1 = 2 rabbits.
- 5. There are 8 + 13 = 21 petals on the daisy.

6. No;
$$\frac{5.4}{4} \approx 1.4$$

6. No;
$$\frac{5.4}{4} \approx 1.4$$
 7. Yes; $\frac{4.5}{2.8} \approx 1.6$

7-2 RATIOS IN SIMILAR POLYGONS, **PAGES 462-467**

CHECK IT OUT! PAGES 462-464

1. $\angle C \cong \angle H$. By Rt. $\angle \cong$ Thm., $\angle B \cong \angle G$. By 3rd & Thm., $\angle A \cong \angle J$. $\frac{AB}{JG} = \frac{10}{5} = 2, \frac{BC}{GH} = \frac{6}{3} = 2, \frac{AC}{JH} = \frac{11.6}{5.8} = 2$

2. Step 1 Identify pairs of $\cong \&$.

$$\angle L \cong \angle P$$
 (Given)
 $\angle M \cong \angle N$ (Rt. $\angle \cong$ Thm.)

$$\angle J \cong \angle S$$
 (3rd \(\Lambda \) Thm.)

$$\frac{JL}{SP} = \frac{75}{30} = \frac{5}{2}, \frac{LM}{PN} = \frac{60}{24} = \frac{5}{2}, \frac{JM}{SN} = \frac{45}{18} = \frac{5}{2}$$

yes; similarity ratio is $\frac{5}{2}$, and $\triangle LMJ \sim \triangle PNS$.

3. Let *x* be length of the model boxcar in inches. Rect. model of boxcar is ~ to rect. boxcar, so corr. lengths are proportional.

$$\frac{\text{length of boxcar}}{\text{length of model}} = \frac{\text{width of boxcar}}{\text{width of model}}$$

$$\frac{36.25}{x} = \frac{9}{1.25}$$

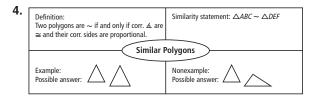
$$36.25(1.25) = 9x$$

$$45.3125 = 9x$$

$$x = \frac{45.3125}{9} \approx 5 \text{ in.}$$

THINK AND DISCUSS, PAGE 464

- **1.** \cong symbol is formed.
- 2. Sides of rect. EFGH are 9 times as long as corr. sides of rect. ABCD.
- 3. Possible answers: reg. polygons of same type; ©



EXERCISES, PAGES 465-467

GUIDED PRACTICE, PAGE 465

- 1. Possible answer: students' desks
- 2. $\angle M \cong \angle U$ and $\angle N \cong \angle V$. By 3rd \triangleq Thm., $\angle P \cong \angle W$. $\frac{MN}{UV} = \frac{4}{8} = \frac{1}{2}, \frac{MP}{UW} = \frac{3}{6} = \frac{1}{2}, \frac{NP}{VW} = \frac{2}{4} = \frac{1}{2}$
- **3.** $\angle A \cong \angle H$ and $\angle C \cong \angle K$. By def. of $\cong \&$, and taking vertices clockwise in both figures, $\angle B \cong \angle J$ and

$$\frac{AB}{HJ} = \frac{8}{12} = \frac{2}{3}, \frac{BC}{JK} = \frac{4}{6} = \frac{2}{3}, \frac{CD}{KL} = \frac{4}{6} = \frac{2}{3}, \frac{DA}{LH} = \frac{8}{12} = \frac{2}{3}$$

4. Step 1 Identify pairs of $\cong \&$. Think: All & of a rect. are rt. \triangle and are \cong .

$$\angle A \cong \angle E$$
, $\angle B \cong \angle F$, $\angle C \cong \angle G$, and $\angle D \cong \angle H$.

$$\frac{AB}{EF} = \frac{135}{90} = \frac{3}{2}, \frac{AD}{EH} = \frac{45}{30} = \frac{3}{2}$$
Yes; since opp. sides of a rect. are \cong , corr. sides

are proportional. Similarity ratio is $\frac{3}{2}$, and $ABCD \sim EFGH$.

5. Step 1 Identify pairs of $\cong \&$.

$$\angle M \cong \angle W$$
, $\angle P \cong \angle U$ (Given)
 $\angle R \cong \angle X$ (3rd & Thm.)

$$\frac{RM}{XW} = \frac{8}{12} = \frac{2}{3}, \frac{MP}{WU} = \frac{10}{15} = \frac{2}{3}, \frac{RP}{XU} = \frac{4}{6} = \frac{2}{3}$$
yes; similarity ratio is $\frac{2}{3}$, and $\triangle RMP \sim \triangle XWU$.

6. Let *x* be height of reproduction in feet. Reproduction is ~ to original, so corr. lengths are proportional. height of reproduction = width of reproduction

height of original
$$\frac{x}{73} = \frac{24}{58}$$

$$58x = 73(24) = 1752$$

$$x = \frac{1752}{58} \approx 30 \text{ ft}$$

PRACTICE AND PROBLEM SOLVING, PAGES 465-466

7. $\angle K \cong \angle T$, $\angle L \cong \angle U$ (Given)

$$\angle J \cong \angle S$$
, $\angle M \cong \angle V$ (Rt. $\angle \cong$ Thm.)
 $\frac{JK}{ST} = \frac{20}{24} = \frac{5}{6}$, $\frac{KL}{TU} = \frac{14}{16.8} = \frac{5}{6}$, $\frac{LM}{UV} = \frac{30}{36} = \frac{5}{6}$, $\frac{JM}{SV} = \frac{10}{12} = \frac{5}{6}$

8. $\angle A \cong \angle X$, $\angle C \cong \angle Z$ (Given)

$$\angle B \cong \angle Y$$
 (3rd & Thm.)

$$\angle B \cong \angle Y \text{ (3rd } \& \text{ Thm.)}$$

 $\frac{AB}{XY} = \frac{8}{4} = 2, \frac{BC}{YZ} = \frac{6}{3} = 2, \frac{CA}{ZX} = \frac{12}{6} = 2$

- - $\frac{QR}{XU} = \frac{35}{40} = \frac{7}{8}, \frac{QS}{XZ} = \frac{21}{24} = \frac{7}{8}, \frac{RS}{UZ} = \frac{28}{32} = \frac{7}{8}$ yes; similarity ratio = $\frac{7}{8}$; $\triangle RSQ \sim \triangle UZX$
- **10. Step 1** Identify pairs of $\cong \&$. $\angle A \cong \angle M$, $\angle B \cong \angle J$, $\angle C \cong \angle K$, $\angle D \cong \angle L$ (Rt. $\angle \cong$ Thm.)

Step 2 Compare corr. sides. $\frac{AB}{MJ} = \frac{18}{24} = \frac{3}{4}, \frac{AD}{ML} = \frac{AD}{JK} = \frac{36}{54} = \frac{2}{3}$ no; the rectangles are not similar

- 11. $\frac{\text{model length}}{\text{car length}} = \frac{1}{56}$ $\frac{3}{\ell} = \frac{1}{56}$ $3(56) = \ell$ $\ell = 168 \text{ in.} = 14 \text{ ft}$
- **12.** Let x, y be side lengths of squares *ABCD* and *PQRS*. Areas are x^2 and y^2 , so

PQRS. Areas are
$$x'$$
 and y' , so
$$\frac{x^2}{y^2} = \frac{4}{36} = \frac{1}{9}$$

$$\frac{x}{y} = \sqrt{\frac{1}{9}} = \frac{1}{3}$$

$$\sim \text{ ratio of } ABCD \text{ to } PQRS = \frac{x}{y} = \frac{1}{3}$$

$$\sim \text{ ratio of } PQRS \text{ to } ABCD = \frac{y}{y} = \frac{3}{1}$$

- 13. sometimes (iff acute \triangle are \cong)
- **14.** always (all (rt.) \triangle are \cong , all side-length ratios are =)
- **15.** never (in trap., 1 pair sides are ∦, so opp. pairs of ఉ cannot be ≅; but in □, they are ≅)
- **16.** always (by CPCTC, all corr. & are \cong , and since corr. sides \cong , \sim ratio = 1)
- 17. sometimes (similar polygons are \cong iff \sim ratio = 1)
- 18. By def. of reg. polygons, corr. int. & are ≅, and side lengths are ≅ and thus proportional. So any 2 reg. polygons with same number of sides are ~.
- 19. $\frac{EF}{AB} = \frac{FG}{BC}$ $\frac{x+3}{4} = \frac{2x-4}{3}$ 3(x+3) = 4(2x-4) 3x+9 = 8x-16 25 = 5x x = 520. $\frac{MP}{XZ} = \frac{NP}{YZ}$ $\frac{x+5}{30} = \frac{4x-10}{75}$ 75(x+5) = 30(4x-10) 5(x+5) = 2(4x-10) 5x+25 = 8x-20 45 = 3x x = 15
- 21. Possible answer:

Statue of Liberty's nose $\frac{y \text{ our nose}}{x \text{ ft}} \approx \frac{2 \text{ in.}}{7 \text{ in.}}$ $7x \approx 2(16.4) = 32.8$ $x \approx 4.7$

Estimated length of Statue of Liberty's nose is 4.7 ft (or between 4.5 ft and 5 ft).

- 22. If 2 polygons are ~, then their corr. ∠ are ≃ and their corr. sides are proportional. If corr. ∠ of 2 polygons are ≃ and their corr. sides are proportional, then polygons are ~.
- 23. $\square JKLM \sim \square NOPQ \rightarrow \angle O \cong \angle K \rightarrow m\angle O = 75^{\circ}$ $NOPQ a \square \rightarrow \angle Q \cong \angle O \rightarrow m\angle Q = 75^{\circ}$ $\angle O$ and $\angle Q$ are 75° &.

24. $\frac{\text{width on blueprint}}{\text{actual width}} = \frac{\text{length on blueprint}}{\text{actual length}}$ $\frac{w}{14} = \frac{3.5}{18}$ 18w = 14(3.5) = 49 $w = \frac{49}{18} \approx 2.7 \text{ in.}$

- **25.** Polygons must be ≅. Since polygons are ~, their corr. ≜ must be ≅. Since ~ ratio is 1, corr. sides must have same length.
- 26a. $\frac{\text{height of tree on backdrop}}{\text{height of tree on flat}} = \frac{1}{10}$ $\frac{0.9}{h} = \frac{1}{10}$ 0.9(10) = hh = 9 ft
 - **b.** $\frac{\text{height of tree on flat}}{\text{height of actual tree}} = \frac{1}{2}$ $\frac{9}{H} = \frac{1}{2}$ 9(2) = HH = 18 ft
 - c. \sim ratio = $\frac{\text{height of tree on backdrop}}{\text{height of actual tree}}$ = $\frac{0.9}{18} = \frac{1}{20}$

TEST PREP, PAGE 467

- 27. C $\frac{y}{14.4} = \frac{8.4}{4.8}$ 4.8y = 14.4(8.4) = 120.96 y = 25.228. F $\frac{5}{2} = \frac{GL}{PS}$ $\frac{5}{2} = \frac{20}{PS}$ 5PS = 20(2) = 40 PS = 8
- **29.** Ratios of sides are not the same: $\frac{12}{3.5} = \frac{24}{7}$, $\frac{10}{2.5} = 4$, $\frac{6}{1.5} = 4$

CHALLENGE AND EXTEND, PAGE 467

30.
$$\frac{\text{model length}}{\text{building length}} = \frac{1}{500}$$

$$\frac{\ell}{200} = \frac{1}{500}$$

$$500\ell = 200$$

$$\ell = 0.4 \text{ ft} = 4.8 \text{ in.}$$

$$\frac{\text{model width}}{\text{building width}} = \frac{1}{500}$$

$$\frac{w}{140} = \frac{1}{500}$$

$$500w = 140$$

$$w = 0.28 \text{ ft} = 3.36 \text{ in.}$$

- **31.** Since $\overline{QR} \parallel \overline{ST}$, $\angle PQR \cong \angle PST$ and $\angle PRQ \cong \angle PTS$ by Alt. Int. & Thm. $\angle P \cong \angle P$ by Reflex. Prop. of \cong . Thus corr. & of $\triangle PQR$ and $\triangle PST$ are \cong . Since PS = 6 and PT = 8, $\frac{PQ}{PS} = \frac{PR}{PT} = \frac{QR}{ST} = \frac{1}{2}$. Therefore $\triangle PQR \sim \triangle PST$ by def. of \sim polygons.
- **32a.**By HL, $\triangle ABD \cong \triangle CBD$, so $\angle A \cong \angle C$, and $m\angle A = m\angle C = 45^\circ$. So $\triangle ABC$ is a 45° - 45° - 90° \triangle . $AC = AB\sqrt{2} = 1\sqrt{2} = \sqrt{2}$ $m\angle CBD = 90 \angle C = 45^\circ$, so $\triangle CDB$ is also a 45° - 45° - 90° \triangle . So $BC = 1 = DC\sqrt{2} = DB\sqrt{2}$ $\sqrt{2} = 2DC = 2DB$ $DC = DB = \frac{\sqrt{2}}{2}$
 - **b.** From part a., corr. & of $\triangle ABC$ and $\triangle CDB$. $\frac{AB}{BD} = \frac{BC}{DC} = \frac{AC}{BC} = \sqrt{2}$. By def. of \sim , $\triangle ABC \sim \triangle CDB$.
- 33a. rect. ABCD ~ rect. BCFE

b.
$$\frac{\ell}{1} = \frac{1}{\ell - 1}$$

c.
$$\ell(\ell-1) = 1$$

 $\ell^2 - \ell = 1$
 $\ell^2 - \ell - 1 = 0$
 $\ell = \frac{1 \pm \sqrt{1^2 - 4(1)(-1)}}{2}$
 $= \frac{1 \pm \sqrt{5}}{2}$

Think: $\ell > 0$, so take positive sq. root.

$$\ell = \frac{1 + \sqrt{5}}{2}$$

d. $\ell \approx 1.6$

SPIRAL REVIEW, PAGE 467

- **34.** # of orders = # of permutations of 4 things = 4! = 24
- **35.** Think: Kite \rightarrow diags. are \perp . So $\angle QTR$ is a rt. \angle . $m\angle QTR = 90^{\circ}$
- **36.** Think: $\triangle PST \cong \triangle RST$. By CPCTC, $\angle PST \cong \angle RST$ $m\angle PST = m\angle RST = 20^{\circ}$
- **37.** Think: $\triangle PST$ is a rt. \triangle . So $\angle PST$ and $\angle TPS$ are comp.

$$m\angle TPS = 90 - m\angle PST$$

= 90 - 20 = 70°

38.
$$\frac{x}{4} = \frac{y}{10}$$

 $10x = 4y$

39.
$$\frac{x}{4} = \frac{y}{10}$$
$$10x = 4y$$
$$\frac{10x}{y} = 4$$
$$\frac{10}{y} = \frac{4}{x}$$

40.
$$\frac{x}{4} = \frac{y}{10}$$

 $x = \frac{4y}{10}$
 $\frac{x}{y} = \frac{4}{10}$ or $\frac{2}{5}$

TECHNOLOGY LAB: PREDICT TRIANGLE SIMILARITY RELATIONSHIPS, PAGES 468–469

ACTIVITY 1, PAGE 468

3. The ratios of cor. side lengths are =.

TRY THIS, PAGE 468

- 1. △ Sum Thm.
- **2.** Yes; in $\sim \triangle$, corr. sides are proportional.

ACTIVITY 2, PAGE 468

3. corr. \triangle are \cong .

TRY THIS, PAGE 469

- Yes; if 2
 △ have their corr. sides in same ratio, then they are ~.
- 4. They are similar in that both allow you to conclude that corr. are ≅. They are different in that the conjecture suggests that with corr. sides in same ratio have same shape, but SSS ≅ Thm. allows you to conclude that the have both same shape and same size.

ACTIVITY 3, PAGE 469

- **3.** The ratio of the corr. sides of △ABC and △DEF are proportional.
- **4.** The corr. \triangle of the \triangle are \cong .

TRY THIS, PAGE 469

- **5.** Yes; corr. sides are proportional and corr. \triangle are \cong .
- 6. If \(\text{\Lambda}\) have 2 pairs of corr. sides in same proportion and included \(\text{\Lambda}\) are \(\text{\Lambda}\), then \(\text{\Lambda}\) are \(\times\). This is related to the SAS \(\text{\Lambda}\) Thm.

7-3 TRIANGLE SIMILARITY: AA, SSS, AND SAS, PAGES 470-477

CHECK IT OUT! PAGES 470-473

- **1.** By \triangle Sum Thm., $m\angle C = 47^{\circ}$, so $\angle C \cong \angle F$. $\angle B \cong \angle E$ by Rt. $\angle \cong$ Thm. Therefore $\triangle ABC \sim \triangle DEF$ by AA \sim .
- 2. $\angle TXU \cong \angle VXW$ by Vert. \triangle Thm. $\frac{TX}{VX} = \frac{12}{16} = \frac{3}{4}, \frac{XU}{XW} = \frac{15}{20} = \frac{3}{4}$ Therefore $\triangle TXU \sim \triangle VXW$ by SAS \sim .
- 3. Step 1 Prove \triangle are \sim . It is given that $\angle RSV \cong \angle T$. By the Reflex. Prop. of \cong , $\angle R \cong \angle R$. Therefore $\triangle RSV \sim \triangle RTU$ by AA \sim . Step 2 Find RT.

$$\frac{RT}{RS} = \frac{TU}{SV}$$

$$\frac{RT}{10} = \frac{12}{8}$$

$$8RT = 10(12) = 120$$

$$RT = 15$$

4.	Statements	Reasons
	1. M is mdpt. of \overline{JK} , N is mdpt. of \overline{KL} , and P is mdpt. of \overline{JL} .	1. Given
	2. $MP = \frac{1}{2}KL$, $MN = \frac{1}{2}JL$, $NP = \frac{1}{2}KJ$	2. △ Midsegs. Thm.
	2	
	$3. \frac{MP}{KL} = \frac{MN}{JL} = \frac{NP}{KJ} = \frac{1}{2}$	3. Div. Prop. of =
	4. $\triangle JKL \sim \triangle NPM$	4. SSS ~ Step 3

5.
$$\frac{FG}{AC} = \frac{BF}{AB}$$
$$\frac{FG}{5x} = \frac{4}{4x}$$
$$FG(4x) = 4(5x)$$
$$4FG = 20$$
$$FG = 5$$

THINK AND DISCUSS, PAGE 473

- **1.** $\angle A \cong \angle D$ or $\angle C \cong \angle F$ **2.** $\frac{BA}{ED} = \frac{3}{5}$
- 3. No; corr. sides need to be proportional but not necessarily \cong for \triangle to be \sim .

	Congruence	Similarity
SSS	If 3 sides of 1 \triangle are respectively \cong to 3 sides of another \triangle , then the \triangle are \cong .	If 3 sides of $1\triangle$ are proportional to the 3 corr. sides of another \triangle , then the \triangle are \sim .
SAS	If 2 sides and the included \angle of 1 \triangle are \cong to 2 sides and the included \angle of another \triangle , then the \triangle are \cong .	If 2 sides of 1△ are proportional to 2 sides of another △ and their included ﴿ are ≅, then the △ are ~.
		1 2 2
AA		If $2 \leq 0$ of $1 \triangle$ are \cong to $2 \leq 0$ of another \triangle , then the \triangle are \sim .
		\triangle

EXERCISES, PAGES 474-477

GUIDED PRACTICE, PAGE 474

- **1.** By def. of $\angle\cong$, $\angle C\cong\angle H$. By \triangle Sum Thm., $m\angle A=47^\circ$, so $\angle A\cong\angle F$. Therefore $\triangle ABC\sim\triangle FGH$ by AA \sim .
- **2.** $\angle P \cong \angle T$ (given). $\angle QST$ is a rt. \angle by the Lin. Pair Thm., so $\angle QST \cong \angle RSP$. Therefore $\triangle QST \sim \triangle RSP$ by AA \sim .

3.
$$\frac{DE}{JK} = \frac{8}{16} = \frac{1}{2}, \frac{DF}{JL} = \frac{6}{12} = \frac{1}{2}, \frac{EF}{KL} = \frac{10}{20} = \frac{1}{2}$$

Therefore $\triangle DEF \sim \triangle JKL$ by SSS \sim .

4.
$$\angle NMP \cong \angle RMQ$$
 (given)
$$\frac{MN}{MR} = \frac{4}{6} = \frac{2}{3}, \frac{MP}{MQ} = \frac{8}{4+8} = \frac{8}{12} = \frac{2}{3}$$
Therefore $\triangle MNP \sim \triangle MRQ$ by SAS \sim .

5. Step 1 Prove \triangle are \sim . It is given that $\angle C \cong \angle E$. $\angle A \cong \angle A$ by Reflex. Prop. of \cong . Therefore $\triangle AED \cong \triangle ACB$ by AA \sim .

Step 2 Find AB.

$$\frac{AB}{AD} = \frac{BC}{DE}$$

$$\frac{AB}{6} = \frac{15}{9}$$

$$9AB = 15(6) = 90$$

$$AB = 10$$

6. Step 1 Prove \triangle are \sim . Since $\overline{UV} || \overline{XY}$, by Alt. Int. \triangle Thm., $\angle U \cong \angle Y$ and $\angle V \cong \angle X$. Therefore $\triangle UVW \sim \triangle YXW$ by AA \sim .

Step 2 Find WY.

$$\frac{WY}{WU} = \frac{WX}{WV}$$

 $\frac{WY}{9} = \frac{8.75}{7}$
 $7WY = 9(8.75) = 78.75$

WY = 11.25

7.	Statements	Reasons
	1. MN KL	1. Given
	2. ∠JMN ≅ ∠JKL, ∠JNM ≅ ∠JLK	2. Corr. & Post.
	3. $\triangle JMN \sim \triangle JKL$	3. AA ~ Step 2

8.	Statements	Reasons
	1. $SQ = 2QP$, $TR = 2RP$	1. Given
	2. SP = SQ + QP,	2. Seg. Add. Post.
	TP = TR + RP	
	3. SP = 2QP + QP,	3. Subst.
	TP = 2RP + RP	
	4. $SP = 3QP$, $TP = 3RP$	4. Seg. Add. Post.
	$5. \frac{SP}{QP} = 3, \frac{TP}{RP} = 3$	5. Div. Prop. of =
	6. ∠ <i>P</i> ≅ ∠ <i>P</i>	6. Reflex. Prop. of \cong
	7. $\triangle PQR \sim \triangle PST$	7. SAS ~ <i>Steps 5, 6</i>

- 9. SAS or SSS ~ Thm.
- **10. Step 1** Prove \triangle are \sim .

$$\angle S \cong \angle S$$
 by Reflex. Prop. of \cong $\frac{SA}{SC} = \frac{733 + 586}{586} \approx 2.25, \frac{SB}{SD} = \frac{800 + 644}{644} \approx 2.24$ Therefore $\triangle SAB \sim \triangle SCD$ by SAS \sim .

Step 2 Find AB.

$$\frac{AB}{CD} = \frac{SA}{SC}$$

$$\frac{AB}{533} \approx 2.25$$

$$AB \approx 2.25(533)$$

$$\approx 1200 \text{ m or } 1.2 \text{ km}$$

PRACTICE AND PROBLEM SOLVING, PAGES 475-476

- **11.** $\angle G \cong \angle G$ by Reflex. Prop. of \cong . $\angle GLH \cong \angle K$ by Rt. $\angle \cong$ Thm. Therefore $\triangle HLG \sim \triangle JKG$ by AA \sim .
- **12.** By Isosc. \triangle Thm., $\angle B \cong \angle C$ and $\angle E \cong \angle F$. By \triangle Sum Thm.,

$$32 + 2m \angle B = 180$$
$$2m \angle B = 148^{\circ}$$
$$m \angle B = 74^{\circ}$$

By def. of $\cong \&$, $\angle B \cong \angle E$ and $\angle C \cong \angle F$. Therefore $\triangle ABC \sim \triangle DEF$ by $AA \sim$.

- 13. $\angle K \cong \angle K$ by Reflex. Prop. of $\cong \frac{KL}{KN} = \frac{6}{4} = \frac{3}{2}, \frac{KM}{KL} = \frac{5+4}{6} = \frac{3}{2}$ Therefore $\triangle KLM \sim \triangle KNL$ by SAS \sim .
- 14. $\frac{UV}{XY} = \frac{VW}{YZ} = \frac{WU}{ZX} = \frac{4}{5.5} = \frac{8}{11}$ Therefore $\triangle UVW \sim \triangle XYZ$ by SSS \sim .
- **15. Step 1** Prove \triangle are \sim . It is given that $\angle ABD \cong \angle C$. $\angle A \cong \angle A$ by Reflex. Prop. of \cong . Therefore $\triangle ABD \cong \triangle ACB$ by AA \sim .

Step 2 Find AB.
$$\frac{AB}{AD} = \frac{AC}{AB}$$

$$\frac{AB}{AD} = \frac{AB}{AB}$$

$$\frac{AB}{4} = \frac{4+12}{AB}$$

$$AB^2 = 4(16) = 64$$

$$AB = +\sqrt{64} = 8$$

- 16. Step 1 Prove & are ~.
 - Since $\overline{ST} \parallel \overline{VW}$, $\angle PST \cong \angle V$ by Corr. & Post. $\angle P$ $\cong \angle P$ by Reflex. Prop. of \cong . Therefore $\triangle PST \sim$ $\triangle PVW$ by AA \sim .

$$\frac{PS}{PV} = \frac{ST}{VW}$$

$$\frac{PS}{PS+6} = \frac{10}{17.5} = \frac{4}{7}$$

$$\frac{7PS}{7PS} = 4(PS+6)$$

$$\frac{7PS}{7PS} = 4PS + 24$$

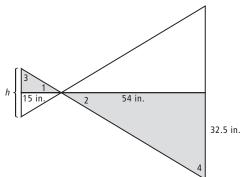
$$\frac{3PS}{3PS} = 24$$

PS = 8

17.	Statements	Reasons
	1. $CD = 3AC$, $CE = 3BC$	1. Given
	$2.\frac{CD}{AC} = 3, \frac{CE}{BC} = 3$	2. Div. Prop. of ≅
	3. ∠ACB ≅ ∠DCE	3. Vert. & Thm.
	4. $\triangle ABC \sim \triangle DEC$	4. SAS ~ Steps 2, 3

18.	Statements	Reasons
	$1. \frac{PR}{MR} = \frac{QR}{NR}$	1. Given
	2. ∠R ≅ ∠R	2. Reflex. Prop. of ≅
	3. $\triangle PQR \sim \triangle MNR$	3. SAS ~ Steps 1, 2
	4. ∠1 ≅ ∠2	4. Def. of ~ ▲

19.



By Vert. & Thm., $\angle 1 \cong \angle 2$. Since vert. sides are \parallel , $\angle 3 \cong \angle 4$ by Corr. & Post., so marked & are \sim . Therefore,

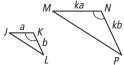
$$\frac{h \div 2}{1.25} = \frac{32.5}{54}$$

$$54\left(\frac{h}{2}\right) = 1.25(32.5)$$

$$27h = 40.625$$

$$h \approx 1.5$$
 in.

20.



- yes; SAS ~
- - yes; SSS ~
- 23. Think: $\triangle PQR \cong \triangle PST$ by AA \sim . $\frac{PS}{PQ} = \frac{ST}{QR}$

$$\frac{PS}{PQ} = \frac{ST}{QR} = \frac{x+5}{x+5}$$

$$\frac{x+3}{3} = \frac{x+3}{4}$$
$$4(x+3) = 3(x+5)$$

$$4x + 12 = 3x + 15$$

$$x = 3$$

24. Think: $\triangle EFG \cong \triangle HJG$ by AA \sim .

$$\frac{EG}{GH} = \frac{FG}{GJ}$$

$$\frac{2x - 2}{15} = \frac{x + 9}{20}$$

$$20(2x - 2) = 15(x + 9)$$

$$40x - 40 = 15x + 135$$

$$25x = 175$$

$$x = 7$$

25a. Think: Calculate slant edge lengths base edge length for each

pyramid.

Pyramid A:
$$\frac{12}{10} = \frac{6}{5}$$
; Pyramid B: $\frac{9}{7.2} = \frac{5}{4}$;

Pyramid C:
$$\frac{9.6}{8} = \frac{6}{5}$$

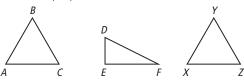
Since slant edges of each pyramid are \cong , Pyramids A and C are ~ by SSS ~.

Lengths are =.

168

b.
$$\frac{\text{base of A}}{\text{base of C}} = \frac{10}{8} = \frac{5}{4}$$

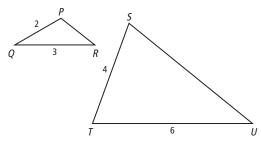
All rights reserved.



27. Think: Since all horiz. lines are \parallel , 3 \triangleq with horiz. bases are \sim by AA \sim .

$$\frac{JK}{6} = \frac{3}{9}$$
 $\frac{MN}{6} = \frac{6}{9}$
 $9JK = 6(3) = 18$ $9MN = 6(6) = 36$
 $JK = 2$ ft $MN = 4$ ft

- **28.** Since $\triangle ABC \sim \triangle DEF$, by def. of $\sim \triangle$, $\angle A \cong \angle D$ and $\angle B \cong \angle E$. Similarly, since $\triangle DEF \sim \triangle XYZ$, $\angle D \cong \angle X$ and $\angle E \cong \angle Y$. Thus by Trans. Prop. of \cong , $\angle A \cong \angle X$ and $\angle B \cong \angle Y$. So $\triangle ABC \sim \triangle XYZ$ by $AA \sim$.
- 29. Possible answer:



- **30.** Since $\triangle KNJ$ is isosc. with vertex $\angle N$, $\overline{KN} \cong \overline{JN}$ by def. of an isosc. \triangle . $\angle NKJ \cong \angle NJK$ by Isosc. \triangle Thm. It is given that $\angle H \cong \angle L$, so $\triangle GHJ \cong \triangle MLK$ by AA \sim .
- **31a.** The \triangle are \sim by AA \sim if you assume that camera is \parallel to hurricane (that is, $\overline{YX} \parallel \overline{AB}$).
 - **b.** \triangle *YWZ* \sim \triangle *BCZ* and \triangle *XWZ* \sim \triangle *ACZ*, also by AA \sim .

c.
$$\frac{XW}{AC} = \frac{WZ}{ZC} = \frac{50}{150}$$

$$150XW = 50AC$$

$$\frac{YW}{BC} = \frac{WZ}{ZC} = \frac{50}{150}$$

$$150YW = 50BC$$

$$150XW + 150YW = 50AC + 50BC$$

$$150XY = 50AB$$

$$50AB = 150(35) = 5250$$

$$AB = 105 \text{ mi}$$

- **32.** Solution B is incorrect. The proportion should be $\frac{8}{10} = \frac{8+y}{14}.$
- **33.** Let measure of vertex $\underline{\&}$ be x° . Then by Isosc. \triangle Thm., base $\underline{\&}$ in each \triangle must measure $\left(\frac{180-x}{2}\right)^{\circ}$. So $\underline{\&}$ are \sim by AA \sim .

TEST PREP, PAGE 477

34. C
$$\frac{TU}{PQ} = \frac{UV}{QR}$$

$$\frac{TU}{60} = \frac{60 + 20}{40 + 60} = \frac{4}{5}$$

$$5TU = 60(4) = 240$$

$$TU = 48$$
35. J
$$\frac{FG}{BC} = \frac{10.5}{42} = \frac{10.5}{58} = \frac{10.5}{5$$

- **36.** C Rects. $\sim \to \overline{BC} \sim \overline{FG}$, $\angle C \sim \angle G$, and $\overline{CD} \sim \overline{GH}$, which are conditions for SAS \sim .
- 37. 30 $\frac{x}{12} = \frac{20}{8}$ 8x = 12(20) = 240 x = 30

CHALLENGE AND EXTEND, PAGE 477

- 38. Assume that AB < DE and choose X on \overline{DE} so that $\overline{AB} \cong \overline{DX}$. Then choose Y on \overline{DF} so that $\overline{XY} \parallel \overline{EF}$. By Corr. & Post., $\angle DXY \cong \angle DEF$ and $\angle DYX \cong \angle DFE$. Therefore $\triangle DXY \sim \triangle DEF$ by $AA \sim$. By def. of $\sim \&$, $\frac{DX}{DE} = \frac{XY}{EF} = \frac{DY}{DF}$. By def. of \cong , AB = DX. So $\frac{AB}{DE} = \frac{XY}{EF}$. It is given that $\frac{AB}{DE} = \frac{BC}{EF}$, so XY = BC. $\overline{XY} \cong \overline{BC}$ by def. of \cong . Similarly, $\overline{DY} \cong \overline{AC}$, so $\triangle ABC \cong \triangle DXY$ by SSS \cong Thm. It follows that $\triangle ABC \sim \triangle DXY$. Then by Trans. Prop. of \sim , $\triangle ABC \sim \triangle DEF$.
- **39.** Assume that AB < DE and choose X on \overline{DE} so that $\overline{XE} \cong \overline{AB}$. Then choose Y on \overline{EF} so that $\overline{XY} \parallel \overline{DF}$. $\angle EXY \cong \angle EDF$ by Corr. & Post., $\angle E \cong \angle E$ by Reflex. Prop. of \cong . Therefore $\triangle XEY \sim \triangle DEF$ by $AA \sim$. By def. of $\sim \&$, $\frac{XE}{DE} = \frac{EY}{EF}$. It is given that $\frac{AB}{DE} = \frac{BC}{EF}$. By def. of \cong , XE = AB, so $\frac{XE}{DF} = \frac{BC}{EF}$. Thus by def. of \cong , BC = EY and so $\overline{BC} \cong \overline{EY}$. It is also given that $\angle B \cong \angle E$, so $\triangle ABC \cong \triangle XEY$ by $SAS \cong Thm$. It follows that $\triangle ABC \sim \triangle XEY$. Then by Trans. Prop. of \sim , $\triangle ABC \sim \triangle DEF$.
- **40.** Think: Use \triangle Sum Thm. and def. of \sim . $m \angle X + m \angle Y + m \angle Z = 180$ 2x + 5y + 102 x + 5x + y = 180 6x + 6y = 78 x + y = 13 y = 13 x Think: Use def. of \sim .

 $\angle A \cong \angle X$ $m\angle A = m\angle X$ 50 = 2x + 5y 50 = 65 - 3x 3x = 15 x = 5 y = 13 - 5 = 8 $m\angle Z = 5(5) + 8 = 33^{\circ}$

SPIRAL REVIEW, PAGE 477

41.
$$100 = \frac{96 + 99 + 105 + 105 + 94 + 107 + x}{700 = 606 + x}$$

 $x = 94$

- **42.** Possible answer: (0, 4), (0, 0), (2, 0)
- **43.** Possible answer: (0, k), (2k, k), (2k, 0), (0, 0)

44.
$$\frac{2x}{10} = \frac{35}{25}$$
$$25(2x) = 10(35)$$
$$50x = 350$$
$$x = 7$$

45.
$$\frac{5y}{450} = \frac{25}{10y}$$
$$5y(10y) = 450(25)$$
$$50y^{2} = 11,250$$
$$y^{2} = 225$$
$$y = \pm 15$$

46.
$$\frac{b-5}{28} = \frac{7}{b-5}$$
$$(b-5)^2 = 28(7) = 196$$
$$b-5 = \pm 14$$
$$b = 5 \pm 14 = 19 \text{ or } -9$$

7A MULTI-STEP TEST PREP, PAGE 478

1.
$$\frac{\text{height of model}}{\text{height of real engine}} = \frac{1}{87}$$
$$\frac{2.5}{x} = \frac{1}{87}$$
$$2.5(87) = x$$
$$x = 217.5 \text{ in.} \approx 18 \text{ ft}$$

2.
$$\frac{\text{height of model}}{\text{height of real station}} = \frac{1}{87}$$
$$\frac{\frac{y}{20}}{\frac{1}{87}} = \frac{1}{87}$$
$$87y = 20$$
$$y \approx 0.23 \text{ ft } \approx 2\frac{3}{4} \text{ in.}$$

3.
$$\frac{\text{height of model}}{\text{height of actual restaurant}} = \frac{1}{87}$$
$$\frac{z}{24} = \frac{1}{87}$$
$$87z = 24$$
$$z \approx 0.28 \text{ ft} \approx 3 \text{ in.}$$

4.
$$\frac{\text{base of B}}{\text{base of G}} = \frac{8}{14} = \frac{5}{7}$$
; $\frac{\text{slant of B}}{\text{slant of G}} = \frac{6}{10} = \frac{3}{5}$; not \sim

$$\frac{\text{base of G}}{\text{base of H}} = \frac{14}{6} = \frac{7}{3}$$
; $\frac{\text{slant of G}}{\text{slant of H}} = \frac{10}{4.5} = \frac{20}{9}$; not \sim

$$\frac{\text{base of B}}{\text{base of H}} = \frac{8}{6} = \frac{4}{3}$$
; $\frac{\text{slant of B}}{\text{slant of H}} = \frac{6}{4.5} = \frac{4}{3}$; \sim
Bank's and hotel's roofs are \sim , by SSS \sim .

READY TO GO ON? PAGE 479

1. slope
$$=\frac{-1+2}{4+1} = \frac{1}{5}$$
 2. slope $=\frac{-3-3}{2+1}$ $=\frac{-6}{3} = \frac{-2}{1}$

3. slope =
$$\frac{1-3}{4+4} = \frac{-2}{8}$$
 4. slope = 0 = $\frac{-1}{4}$

5.
$$\frac{y}{6} = \frac{12}{9}$$

 $9y = 6(12) = 72$
 $y = 8$
7. $\frac{x-2}{4} = \frac{9}{12}$

6.
$$\frac{16}{24} = \frac{20}{t}$$
$$16t = 24(20) = 480$$
$$t = 30$$

7.
$$\frac{x-2}{4} = \frac{9}{x-2}$$

$$(x-2)^2 = 4(9) = 36$$

$$x-2 = \pm 6$$

$$x = 2 \pm 6$$

$$= -4 \text{ or } 8$$
8.
$$\frac{2}{3y} = \frac{y}{24}$$

$$2(24) = 3y(y)$$

$$48 = 3y^2$$

$$16 = y^2$$

$$y = \pm 4$$

$$3. \quad \frac{2}{3y} = \frac{y}{24}$$

$$2(24) = 3y(y)$$

$$48 = 3y^{2}$$

$$16 = y^{2}$$

$$y = \pm 4$$

9.
$$\frac{\text{length of building}}{\text{length of model}} = \frac{\text{width of building}}{\text{width of model}}$$
$$\frac{\ell}{1.4} = \frac{240}{0.8}$$
$$0.8\ell = 1.4(240) = 336$$
$$\ell = 420 \text{ m}$$

10.
$$\frac{AB}{WX} = \frac{64}{96} = \frac{2}{3}$$
; $\frac{AD}{WZ} = \frac{30}{50} = \frac{3}{5}$; no

11. By def. of comp. &,
$$m \angle M = 23^{\circ}$$
 and $m \angle K = 67^{\circ}$; so $\angle J \cong \angle N$, $\angle M \cong \angle P$, and $\angle R \cong \angle K$; $\frac{JM}{NP} = \frac{24}{36} = \frac{2}{3}; \frac{MR}{PK} = \frac{26}{39} = \frac{2}{3}; \frac{JR}{NK} = \frac{10}{15} = \frac{2}{3}$ yes; $\frac{2}{3}$; $\triangle JMR \sim \triangle NPK$

12. Think: Assume magnet
$$\sim$$
 portrait. length of magnet $=$ width of magnet width of portrait $=$ $\frac{\ell}{30} = \frac{3.5}{21}$ $= 30(3.5) = 105$ $\ell = 5$ cm

13.	Statements	Reasons
	1. ABCD is a □.	1. Given
	2. AD BC	2. Def. of □
	3. ∠EDG ≅ ∠FBG	3. Alt. Int. & Thm.
	4. ∠EGD ≅ ∠FGB	4. Vert. & Thm.
	5. △ <i>EDG</i> ~ △ <i>FBG</i>	5. AA ~ Steps 3, 4

14.	Statements	Reasons
	1. $MQ = \frac{1}{3}MN$, $MR = \frac{1}{3}MP$	1. Given
	$2. \frac{MQ}{MN} = \frac{1}{3}, \frac{MR}{MP} = \frac{1}{3}$	2. Div. Prop. of =
	$3. \frac{MQ}{MN} = \frac{MR}{MP}$	3. Trans. Prop. of =
	4. $\angle M \cong \angle M$ 5. $\triangle MQR \sim \triangle MNP$	4. Reflex. Prop. of ≅ 5. SAS ~ Steps 3, 4

15. Think:
$$\triangle XYZ \sim \triangle VUZ$$
 with ratio of proportion $\frac{5}{2}$, by SAS \sim .
$$\frac{XY}{UV} = \frac{5}{2}$$

$$2XY = 5UV$$

$$2XY = 5(16) = 80$$

$$XY = 40 \text{ ft}$$

TECHNOLOGY LAB: INVESTIGATE ANGLE BISECTORS OF A TRIANGLE, **PAGE 480**

TRY THIS, PAGE 480

1.
$$\frac{BD}{AB} = \frac{CD}{AC}$$
 or $\frac{BD}{CD} = \frac{AB}{AC}$

2.
$$\frac{BD}{CD} = \frac{AB}{AC}$$
 or $\frac{BD}{AB} = \frac{CD}{AC}$

ACTIVITY 2:

170

2. Check students' work.

3.
$$\frac{DI}{DG} = \frac{DE + DF}{\text{perimeter } \triangle DEF}$$

4. $\frac{DI}{DG} = \frac{DE + DF}{DE + DF + EF}$; the length of the seg. from the vertex of the bisected ∠ to the incenter divided by the length of the seg. from the vertex to the opp. side is = to the sum of the sides of the bisected \angle divided by the perimeter of the \triangle .

TRY THIS, PAGE 480

- 3. Check students' work.
- 4. Check students' work.

7-4 APPLYING PROPERTIES OF SIMILAR TRIANGLES, PAGES 481-487

CHECK IT OUT! PAGES 482-483

1. It is given that $\overline{PQ} \parallel \overline{LM}$, so $\frac{PL}{PN} = \frac{QM}{QN}$ by \triangle Prop.

Thm.
$$\frac{3}{PN} = \frac{2}{5}$$
$$15 = 2PN$$
$$PN = 7.5$$

2. AD = 36 - 20 = 16 and BE = 27 - 15 = 12, so $\frac{DC}{AD} = \frac{30 - 20}{16} = \frac{5}{4}$ $\frac{EC}{BE} = \frac{15}{12} = \frac{5}{4}$ Since $\frac{DC}{AD} = \frac{EC}{BE}$, $\overline{DE} \parallel \overline{AB}$ by Conv. of \triangle Prop. Thm.

3. $\overline{AK} \parallel \overline{BL} \parallel \overline{CM} \parallel \overline{DN}$ $\frac{KL}{LM} = \frac{AB}{BC}$ $\frac{2.6}{LM} = \frac{2.4}{1.4}$ 2.4(LM) = 2.6(1.4) $LM \approx 1.5 \text{ cm}$ $\frac{KL}{MN} = \frac{AB}{CD}$ $\frac{2.6}{MN} = \frac{2.4}{2.2}$ 2.4(MN) = 2.6(2.2) $MN \approx 2.4 \text{ cm}$ 4. $\frac{BD}{CD} = \frac{AB}{BC}$ by $\triangle \angle$ Bis. Thm. $\frac{4.5}{y} = \frac{9}{y} = \frac{8}{y-2}$ 9(y-2) = 8y 9y - 18 = 8yAC = y - 2= 18 -2 = 16 $DC = \frac{y}{2} = \frac{18}{2} = 9$ $\overrightarrow{MN} \approx 2.4 \text{ cm}$

THINK AND DISCUSS, PAGE 484

1. Possible answer: $\frac{AX}{XB} = \frac{AY}{YC}$; $\frac{AX}{AB} = \frac{XY}{BC}$; $\frac{AY}{AC} = \frac{XY}{BC}$

△ Proportionality Thm.: Conv. of △ Proportionality Thm.: If $\overrightarrow{EF} \parallel \overline{BC}$, then $\frac{AE}{FB} = \frac{AF}{FC}$. If $\frac{AE}{FR} = \frac{AF}{FC}$, then $\overrightarrow{EF} \parallel \overline{BC}$. **Proportionality** 2-Transv. Proportionality Corollary: $\triangle \angle$ Bisector Thm.: If \overline{AD} bisects $\angle A$, then $\frac{BD}{DC} = \frac{AB}{AC}$. If $\overrightarrow{AB} \parallel \overrightarrow{CD} \parallel \overrightarrow{EF}$, then $\frac{AC}{CF} = \frac{BD}{DF}$.

EXERCISES, PAGES 484-487 GUIDED PRACTICE, PAGES 484-485

- **1.** It is given that $\overline{CD} \parallel \overline{FG}$, so $\frac{CE}{CE} = \frac{DE}{DG}$ by \triangle Prop. $\frac{32}{2} = \frac{40}{1}$ DG 24 32DG = 960DG = 30
- 2. It is given that $\overline{QR} \parallel \overline{PN}$, so $\frac{QM}{QP} = \frac{RM}{RN}$ by \triangle Prop. $\frac{8}{5} = \frac{10}{RN}$ 8RN = 50RN = 6.25
- 3. $\frac{EC}{AC} = \frac{1.5}{1.5} = 1$; $\frac{ED}{DB} = \frac{1.5}{1.5} = 1$ Since $\frac{EC}{AC} = \frac{ED}{DB}$, $\overline{AB} \parallel \overline{CD}$ by Conv. of \triangle Prop. Thm.
- 4. $\frac{VU}{US} = \frac{67.5}{54} = \frac{5}{4}; \quad \frac{VT}{TR} = \frac{90}{72} = \frac{5}{4}$ Since $\frac{VU}{US} = \frac{VT}{TR}, \quad \overline{TU} \parallel \overline{RS} \text{ by Conv. of } \triangle \text{ Prop. Thm.}$
- 5. Let ℓ represent length of Broadway between 34th and 35th Streets.

$$\frac{\ell}{275} = \frac{250}{240}$$

$$240\ell = 275(250)$$

$$\ell \approx 286 \text{ ft}$$

6. $\frac{QR}{RS} = \frac{PQ}{PS}$ by $\triangle \angle$ Bis. Thm. $\frac{x-2}{x+1} = \frac{12}{16}$ 16(x-2) = 12(x+1)16x - 32 = 12x + 124x = 44x = 11QR = 11 - 2 = 9; RS = 11 + 1 = 12 7. $\frac{BC}{CD} = \frac{AB}{AD}$ by $\triangle \angle$ Bis. Thm. $\frac{6}{y-1} = \frac{9}{2y-4}$ 6(2y-4) = 9(y-1) 12y-24 = 9y-9 3y = 15 y = 5CD = 5-1 = 4; AD = 2(5)-4 = 6

PRACTICE AND PROBLEM SOLVING, PAGES 485-486

8.
$$\frac{GJ}{JL} = \frac{HK}{KL}$$
$$\frac{6}{4} = \frac{8}{KL}$$
$$6KL = 32$$
$$KL = 5\frac{1}{2}$$

9.
$$\frac{XY}{YU} = \frac{XZ}{ZV}$$
$$\frac{30 - 18}{18} = \frac{XZ}{30}$$
$$12(30) = 18XZ$$
$$XZ = 20$$

10.
$$\frac{EC}{CA} = \frac{12}{4} = 3$$
, $\frac{ED}{DB} = \frac{14}{4\frac{2}{3}} = \frac{42}{14} = 3$
So $\overline{AB} \parallel \overline{CD}$ by Conv. of \triangle Prop. Thm.

11.
$$\frac{PM}{MQ} = \frac{9-2.7}{\frac{2.7}{2.7}} = 2\frac{1}{3}, \frac{PN}{NR} = \frac{10-3}{3} = 2\frac{1}{3}$$

So $\overline{MN} \parallel \overline{QR}$ by Conv. of \triangle Prop. Thm.

12.
$$\frac{LM}{GL} = \frac{HJ}{GH}$$

$$\frac{LM}{11.3} = \frac{2.6}{10.4}$$

$$LM = \frac{2.6}{10.4}(11.3)$$

$$\approx 2.83 \text{ ft}$$

$$\frac{MN}{GL} = \frac{JK}{GH}$$

$$\frac{MN}{GL} = \frac{2.2}{10.4}$$

$$11.3 = \frac{2.2}{10.4}(11.3) \approx 2.39 \text{ ft}$$

13.
$$\frac{BC}{CD} = \frac{AB}{AD}$$

$$\frac{z-4}{\frac{z}{2}} = \frac{12}{10}$$

$$10(z-4) = \frac{z}{2}(12)$$

$$10z - 40 = 6z$$

$$4z = 40$$

$$z = 10$$

$$BC = 10 - 4 = 6; CD = \frac{10}{2} = 5$$

14.
$$\frac{TU}{UV} = \frac{ST}{SV}$$

$$\frac{2y}{14.4} = \frac{4y - 2}{24}$$

$$24(2y) = 14.4(4y - 2)$$

$$48y = 57.6y - 28.8$$

$$28.8 = 9.6y$$

$$y = 3$$

$$ST = 4(3) - 2 = 10; TU = 2(3) = 6$$

15.
$$\frac{AB}{BD} = \frac{AC}{CE}$$

$$16. \ \frac{AD}{DF} = \frac{AE}{EG}$$

17.
$$\frac{DF}{BD} = \frac{EG}{CE}$$

18.
$$\frac{AF}{AB} = \frac{AG}{AC}$$

19.
$$\frac{BD}{CE} = \frac{DF}{EG}$$

$$20. \frac{AB}{AC} = \frac{BF}{CG}$$

21. Let x represent length of 3rd side.

either or
$$\frac{x}{20} = \frac{12}{16}$$
 $\frac{x}{20} = \frac{16}{12}$ $16x = 240$ $12x = 320$ $x = 15 \text{ in.}$ $x = \frac{80}{3} = 26\frac{2}{3} \text{ in.}$

22a.
$$\frac{AC}{BD} = \frac{CE}{DF}$$
 b. $\frac{81.6}{80} = \frac{CE}{70}$ $81.6(70) = 80CE$ $CE = 71.4 \text{ cm}$

c.
$$\frac{AJ}{BK} = \frac{AC}{BD}$$
$$\frac{AJ}{80 + 70 + 60 + 40} = \frac{81.6}{80}$$
$$AJ = \frac{81.6}{80}(250) = 255 \text{ cm}$$

23.	Statements	Reasons
	$1. \frac{AE}{EB} = \frac{AF}{FC}$	1. Given
	2. ∠A ≅ ∠A	2. Reflex. Prop. of ≅
	3. △AEF ~ △ABC	3. SAS ~ Steps 1, 2
	4. ∠AEF ≅ ∠ABC	4. Def. of ~ △
	5. <i>EF</i> ∥ <i>BC</i>	5. Conv. of Corr. & Post.

24.	Statements	Reasons
	1. \overrightarrow{AB} \overrightarrow{CD} , \overrightarrow{CD} \overrightarrow{EF}	1. Given
	2. Draw \overrightarrow{EB} intersecting \overline{CD}	2. 2 pts. determine
	at <i>X</i> .	a line
	$3. \frac{AC}{CE} = \frac{BX}{XE}$	3. △ Prop. Thm.
	$4. \frac{BX}{XE} = \frac{BD}{DF}$	4. △ Prop. Thm.
	$5. \frac{AC}{CE} = \frac{BD}{DF}$	5. Trans. Prop. of =

25a.
$$\frac{PR}{RT} = \frac{QS}{SU}$$

$$\frac{x}{x+2} = \frac{\frac{x}{2}}{x-2} = \frac{x}{x(x-2)}$$

$$2x(x-2) = x(x+2)$$

$$2x^2 - 4x = x^2 + 2x$$

$$x^2 - 6x = 0$$

$$x(x-6) = 0$$

$$x = 6 \text{ (since } x > 0)$$

$$PR = 6; RT = 6 + 2 = 8; QS = \frac{6}{2} = 3;$$

$$SU = 6 - 2 = 4$$

b.
$$\frac{PR}{RT} = \frac{QS}{SU}$$
 or $\frac{6}{8} = \frac{3}{4}$

26. Think: Use \triangle Prop. Thm. and $\triangle \angle$ Bis. Thm.

$$\frac{EF}{BE} = \frac{CD}{BC} = \frac{AD}{AB}$$

$$\frac{EF}{10} = \frac{24}{18} = \frac{4}{3}$$

$$3EF = 40$$

$$EF = 13\frac{1}{3}$$

27.
$$\frac{ST}{TQ} = \frac{SR}{RQ} = \frac{PN}{NM}$$
$$\frac{ST}{10} = \frac{6}{4}$$
$$4ST = 60$$
$$ST = 15$$

28. Total length along Chavez St. is
$$150 + 200 + 75 = 425 \text{ ft.}$$

$$\frac{x}{150} = \frac{500}{425} = \frac{20}{17}$$

$$17x = 150(20) = 3000$$

$$x \approx 176 \text{ ft}$$

$$\frac{y}{200} = \frac{500}{425} = \frac{20}{17}$$

$$17y = 4000$$

$$y \approx 235 \text{ ft}$$

$$\frac{z}{75} = \frac{500}{425} = \frac{20}{17}$$

$$17z = 1500$$

$$z = 88 \text{ ft}$$

- 29. Draw a seg. on tracing paper whose length is = to the vert. dist. from line 1 to line 6 or no greater than the diag. dist. from line 1 to line 6 of the notebook paper. Place the tracing paper over the notebook paper so that the seg. spans exactly 6 of the lines on the notebook paper. Then mark the spots where the tracing-paper seg. crosses the line on the notebook paper. The method works by the 2-Transv. Proportionality Corollary.
- **30.** Think: Use \triangle Prop. Thm. First find *EX*.

$$\frac{EX}{AX} = \frac{EY}{DY}$$

$$\frac{EX}{17} = \frac{16}{18}$$

$$18EX = 272$$

$$EX = 15\frac{1}{9}$$

$$AE = AX + XE$$

$$= 17 + 15\frac{1}{9} = 32\frac{1}{9}$$

$$\frac{EC}{AE} = \frac{DB}{AD}$$

$$\frac{EC}{32^{1}/9} = \frac{7.5}{15} = \frac{1}{2}$$

$$2EC = 32\frac{1}{9}$$

$$EC = 16\frac{1}{18}$$

31. Possible answer: $\frac{BD}{CD} = \frac{AB}{AC}$; $\triangle \angle$ Bis. Thm.

TEST PREP, PAGE 487

$$\frac{US}{SR} = \frac{20}{35} = \frac{4}{7}, \frac{VT}{TR} = \frac{16}{28} = \frac{4}{7}$$
33. J
34. C
$$\frac{AB}{25} = \frac{16}{20}$$

$$20AB = 400$$

$$AB = 20$$

$$AB = 20$$

$$4x = 7.2$$

$$x = 1.8 \text{ mi}$$

$$x + 2.4 = 4.2 \text{ mi}$$

35.
$$\frac{x}{24} = \frac{20}{16} = \frac{5}{4}$$

$$4x = 120$$

$$x = 30$$

$$\frac{y}{15} = \frac{16}{20} = \frac{4}{5}$$

$$5y = 60$$

$$y = 12$$
possible answer:
$$\frac{20}{16} = \frac{15}{12}; \frac{20}{16} = \frac{30}{24}; \frac{15}{12} = \frac{30}{24};$$

$$\frac{20 + 15}{30} = \frac{16 + 12}{24}; \frac{20}{15 + 30} = \frac{16}{12 + 24};$$

$$\frac{20}{20 + 15 + 30} = \frac{16}{16 + 12 + 24}$$

CHALLENGE AND EXTEND, PAGE 487

36.
$$P = AB + BC + AC$$

$$29 = AB + 9 + AC$$

$$20 - AB = AC$$

$$\frac{AB}{AC} = \frac{BD}{CD}$$

$$\frac{AB}{20 - AB} = \frac{4}{5}$$

$$5AB = 4(20 - AB)$$

$$9AB = 80$$

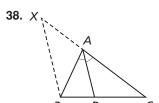
$$AB = 8\frac{8}{9}$$

$$AC = 20 - 8\frac{8}{9} = 11\frac{1}{9}$$

37. Given: $\triangle ABC \sim \triangle XYZ$, \overline{AD} bisects $\angle BAC$, and \overline{XW} bisects $\angle YXZ$.

Prove:
$$\frac{AD}{XW} = \frac{AB}{XY}$$

Statements	Reasons
1. $\triangle ABC \sim \triangle XYZ$	1. Given
2. ∠B ≅ ∠Y	2. Def. of ~ polygons
3. $m \angle BAC = m \angle YXZ$	3. Def. of ~ polygons
4. \overline{AD} bisects $\angle BAC$ and	4. Given
\overline{XW} bisects $\angle YXZ$.	
5. $m \angle BAC = 2m \angle BAD$,	5. Def. of ∠ bis.
$m \angle YXZ = 2m \angle YXW$	
6. $2m\angle BAD = 2m\angle YXW$	6. Trans. Prop. of =
7. $m \angle BAD = m \angle YXW$	7. Div. Prop. of =
8. $\triangle ABD \sim \triangle XYW$	8. AA ~ Steps 2, 7
9. $\frac{AD}{AB} = \frac{AB}{AB}$	9. △ Prop. Thm.
XW XY	



Statements	Reasons
1. AD bisects ∠A.	1. Given
2. Draw $\overline{BX} \parallel \overline{AD}$,	2. Post.
extending \overline{AC} to X .	
$3. \frac{BD}{DC} = \frac{AX}{AC}$	3. △ Prop. Thm.
4. ∠ <i>CAD</i> ≅ ∠ <i>AXB</i>	4. Corr. & Post.
5. ∠ <i>CAD</i> ≅ ∠ <i>DAB</i>	Def of ∠ bis.
6. ∠ <i>DAB</i> ≅ ∠ <i>ABX</i>	6. Alt. Int. 🛦 Thm.
7. ∠ <i>DAB</i> ≅ ∠ <i>AXB</i>	7. Trans. Prop. of ≅
8. ∠ <i>ABX</i> ≅ ∠ <i>AXB</i>	8. Trans. Prop. of ≅
9. $\overline{AX} \cong \overline{AB}$	9. Conv. Isosc. △ Thm.
10. $AX = AB$	10. Def. of ≅ segs.
$11. \frac{BD}{DC} = \frac{AB}{AC}$	11. Subst.

39. Possible answer: Check students' work.

SPIRAL REVIEW, PAGE 487

- **40.** 5 = 1 + 4, 6 = 2 + 4, ... *n*th term is n + 4
- **41.** 3 = 3(1), 6 = 3(2), ... *n*th term is 3n
- **42.** $1 = 1^2$, $4 = 2^2$, $9 = 3^2$, ... *n*th term is n^2
- **43.** Let C = (x, y). $3 = \frac{1+x}{2}$ 6 = 1+xx = 5C = (5, -18)
- **44.** $\angle A \cong \angle A$ (Reflex. Prop. of \cong) $\frac{AB}{AD} = \frac{8}{12} = \frac{2}{3}, \frac{AC}{AE} = \frac{6}{9} = \frac{2}{3}$ Therefore $\triangle ABC \sim \triangle ADE$ by SAS \sim .
- **45.** $\angle KLJ \cong \angle NLM$ (Vert. & Thm.) $\angle K \cong \angle N \ (\triangle \ \text{Sum Thm.} \rightarrow \text{m} \angle N = 68^{\circ})$ Therefore $\triangle JKL \sim \triangle MNL$ by AA \sim .

7-5 USING PROPORTIONAL **RELATIONSHIPS, PAGES 488-494**

CHECK IT OUT! PAGES 488-490

1. Step 1 Convert measurements to inches.

$$GH = 5$$
 ft 6 in. = 5(12) in. + 6 in. = 66 in.

$$JH = 5 \text{ ft} = 5(12) \text{ in.} = 60 \text{ in.}$$

$$NM = 14 \text{ ft 2 in.} = 14(12) \text{ in.} + 2 \text{ in.} = 170 \text{ in.}$$

Step 2 Find
$$\sim \triangle$$
.

Because sun's rays are \parallel , $\angle J \cong \angle N$. Therefore $\triangle GHJ \cong \triangle LMN$ by AA \sim .

Step 3 Find LM.

$$\frac{\ddot{GH}}{LM} = \frac{JH}{NM}$$

$$\frac{66}{LM} = \frac{60}{170}$$

$$60LM = 66(170)$$

$$LM = 187 \text{ in.} = 15 \text{ ft } 7 \text{ in.}$$

2. Use a ruler to measure dist. between City Hall and El Centro College. Dist. is 4.5 cm.

To find actual dist. y, write a proportion comparing map dist. to actual dist.

$$\frac{4.5}{4.5} = \frac{1.5}{200}$$

$$y = 300$$

1.5 $y = 4.5(300)$

$$1.5y = 1350$$

$$y = 900$$

Actual dist. is 900 m, or 0.9 km.

3. Step 1 Set up proportions to find length ℓ and width w of of scale drawing.

$$\frac{\ell}{74} = \frac{1}{20}$$
 $\frac{w}{60} = \frac{1}{20}$ $20\ell = 74$ $20w = 60$ $\ell = 3.7 \text{ in.}$ $w = 3 \text{ in.}$

Step 2 Use a ruler to draw a rect. with new dimensions. (Check students' work.)

4. Similarity ratio of $\triangle ABC$ to $\triangle DEF$ is $\frac{4}{12}$, or $\frac{1}{3}$. By Proportional Perimeters and Areas Thm., ratio of \triangle ' perimeters is also $\frac{1}{3}$, and ratio of \triangle ' areas

is
$$\left(\frac{1}{3}\right)^2$$
, or $\frac{1}{9}$.

Area
$$\frac{A}{A} = 1$$

$$\frac{P}{42} = \frac{1}{3}$$
$$3P = 42$$

$$\frac{A}{96} = \frac{1}{9}$$

$$3P = 42$$

 $P = 14 \text{ mm}$

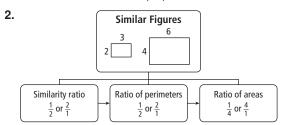
Area
$$\frac{A}{96} = \frac{1}{9}$$

 $9A = 96$
 $A = 10\frac{2}{3} \text{ mm}^2$

Perimeter of $\triangle ABC$ is 14 mm, and area is $10\frac{2}{3}$ mm².

THINK AND DISCUSS, PAGE 490

1. Set up a proportion: $\frac{5.5}{x} = \frac{1}{25}$. Then solve for x to find actual dist.: x = 5.5(25) = 137.5 mi.



EXERCISES, PAGES 491-494

GUIDED PRACTICE, PAGE 491

- 1. indirect measurement
- **2. Step 1** Convert measurements to inches. 5 ft 6 in. = 5(12) in. + 6 in. = 66 in.
 - 4 ft = 4(12) in. = 48 in.
 - 40 ft = 40(12) in. = 480 in.

Step 2 Find $\sim \triangle$.

Since marked \triangle are \cong , \triangle are \sim by AA \sim .

Step 3 Find height of dinosaur, h.

- $\frac{h}{66} = \frac{480}{48}$ $\frac{h}{1} = 10$
- $\frac{1}{66} = 10$ h = 10(66) = 660 in.

Height of dinosaur is 660 in., or 55 ft.

3. Use a ruler to measure to-scale length of \overline{AB} . Length is 0.25 in.

To find actual length *AB*, write a proportion comparing to-scale length to actual length.

- $\frac{0.25}{AB} = \frac{1}{48}$ AB = 0.25(48) = 12 ft
- **4.** Use a ruler to measure to-scale length of $\overline{\mathit{CD}}$. Length is 0.75 in.

To find actual length *CD*, write a proportion comparing to-scale length to actual length.

$$\frac{0.75}{CD} = \frac{1}{48}$$

$$CD = 0.75(48) = 36 \text{ ft}$$

5. Use a ruler to measure to-scale length of \overline{EF} . Length is 1.25 in.

To find actual length *EF*, write a proportion comparing to-scale length to actual length.

$$\frac{1.25}{EF} = \frac{1}{48}$$

$$EF = 1.25(48) = 60 \text{ ft}$$

6. Use a ruler to measure to-scale length of \overline{FG} . Length is 0.5 in.

To find actual length *FG*, write a proportion comparing to-scale length to actual length.

$$\frac{0.5}{FG} = \frac{1}{48}$$

$$FG = 0.5(48) = 24 \text{ ft}$$

- **7. Step 1** Set up proportions to find length ℓ and width w of scale drawing.
 - $\frac{\ell}{10} = \frac{1}{1}$ $\frac{w}{4.6} = \frac{1}{1}$ $\ell = 10 \text{ cm}$ w = 4.6 cm

Step 2 Use a ruler to draw a rect. with new dimensions. (Check students' drawings.)

- **8. Step 1** Set up proportions to find length ℓ and width w of scale drawing.
 - $\frac{\ell}{10} = \frac{1}{2}$ $\frac{w}{4.6} = \frac{1}{2}$ $2\ell = 10$ 2w = 4.6 cm $\ell = 5 \text{ cm}$ w = 2.3 cm

Step 2 Use a ruler to draw a rect. with new dimensions. (Check students' drawings.)

9. Step 1 Set up proportions to find length ℓ and width w of scale drawing.

$$\frac{b}{10} = \frac{1}{2.3}$$
 $\frac{w}{4.6} = \frac{1}{2.3}$
 $2.3b = 10$ $2.3w = 4.6 \text{ cm}$
 $b = 4.3 \text{ cm}$ $w = 2 \text{ cm}$

Step 2 Use a ruler to draw a rect. with new dimensions. (Check students' drawings.)

10. Similarity ratio of MNPQ to RSTU is $\frac{4}{6}$, or $\frac{2}{3}$.

By Proportional Perimeters and Areas Thm., ratio of perimeters is also $\frac{2}{3}$.

$$\frac{14}{P} = \frac{2}{3}$$

$$2P = 14(3) = 42$$

$$P = 21$$

Perimeter of RSTU is 21 cm.

11. Ratio of areas is $\left(\frac{2}{3}\right)^2$, or $\frac{4}{9}$. $\frac{12}{A} = \frac{4}{9}$. 4A = 12(9) = 108. A = 27

Area of *RSTU* is 27 cm².

PRACTICE AND PROBLEM SOLVING, PAGES 491-493

- **12.** 5 ft 2 in. = 62 in.; 7 ft 9 in. = 93 in.; 15.5 ft = 186 in. $\frac{h}{62} = \frac{186}{93} = 2$ $h = 62(2) = 124 \text{ in.} = 10\frac{1}{3} \text{ ft or } 10 \text{ ft 4 in.}$
- **13.** map dist. for $\overline{JK} = 6$ cm

$$\frac{6}{JK} = \frac{1}{9.4}$$

 $JK = 6(9.4) \approx 57 \text{ km}$

14. map dist. for $\overline{NP} = 0.45$ cm

$$\frac{0.45}{NP} = \frac{1}{9.4}$$
 $NP = 0.45(9.4) \approx 4 \text{ km}$

15. Step 1 Set up proportions to find base *b* and height *h* of scale drawing.

 $\frac{b}{150} = \frac{1.5}{100}$ $\frac{b}{100} = \frac{1.5}{100}$ $\frac{h}{200} = \frac{1.5}{100}$ $\frac{h}{100} = 300$ $\frac{h}{100} = 300$ $\frac{h}{100} = 300$ $\frac{h}{100} = 300$

Step 2 Use a ruler to draw a rt. \triangle with new dimensions. (Check students' drawings.)

16. Step 1 Set up proportions to find base *b* and height *h* of scale drawing.

 $\frac{b}{150} = \frac{1}{300}$ $\frac{b}{300b} = \frac{1}{300}$ $\frac{h}{200} = \frac{1}{300}$ $\frac{h}{300b} = 200$ $\frac{h}{200} = 0.5 \text{ in.}$ $\frac{h}{150} = 0.67 \text{ in.}$

Step 2 Use a ruler to draw a rt. \triangle with new dimensions. (Check students' drawings.)

17. Step 1 Set up proportions to find base *b* and height *h* of scale drawing.

 $\frac{b}{150} = \frac{1}{150}$ $\frac{b}{150b} = \frac{1}{150}$ $\frac{h}{200} = \frac{1}{150}$ 150h = 200 $h \approx 1.3 \text{ in.}$

Step 2 Use a ruler to draw a rt. △ with new dimensions. (Check students' drawings.)

18. scale factor
$$=$$
 $\frac{60}{90} = \frac{2}{3}$ **19.** $\frac{A}{1944} = \left(\frac{2}{3}\right)^2 = \frac{4}{9}$ $\frac{P}{381} = \frac{2}{3}$ $9A = 7776$ $A = 864 \text{ m}^2$ $P = 254 \text{ m}$

20. scale factor =
$$\frac{10 \text{ ft}}{0.5 \text{ in.}}$$
 = 20 map dist. = $\frac{30}{16}$ in. $\frac{x}{30} = 20$ = 25 ft $\frac{x}{30} = \frac{30}{16} = \frac{30}{16}$

22. map dist. =
$$\frac{25}{16}$$
 in.
 $\frac{x}{\frac{25}{16}} = 20$
 $x = \frac{25}{16}(20)$
 $x = \frac{25}{16}(20)$
 $x = \frac{32}{16}(20)$
 $x = 32$ ft
 $x = \frac{32}{16}(20)$
 $x = 39$ ft

- **24.** By Proportional Perimeters and Areas Thm., \sim ratio = ratio of perimeters = $\frac{8}{9}$.
- **25.** By Proportional Perimeters and Areas Thm., ratio of areas = $(\sim \text{ ratio})^2$. $\frac{16}{25} = (\sim \text{ ratio})^2$ $\sim \text{ ratio} = \sqrt{\frac{16}{25}} = \frac{4}{5}$
- 26. ratio of areas = $(\sim \text{ratio})^2$ ratio of areas = $(\text{ratio of perims.})^2$ $\frac{4}{81} = (\text{ratio of perims.})^2$ ratio of perims. = $\sqrt{\frac{4}{81}} = \frac{2}{9}$

27.
$$\frac{\text{scale width}}{\text{model width}} = \frac{1}{50}$$

$$\frac{w}{15} = \frac{1}{50}$$

$$w = \frac{15}{50} = 0.3 \text{ ft}$$

$$\frac{\text{scale length}}{\text{model length}} = \frac{1}{50}$$

$$\frac{\ell}{60} = \frac{1}{50}$$

$$\ell = \frac{60}{50} = 1.2 \text{ ft}$$

28a. hyp. of
$$\triangle PQR = \sqrt{3^2 + 4^2} = 5$$
 in.
hyp. of $\triangle WXY = \sqrt{6^2 + 8^2} = 10$ in.
perimeter of $\triangle PQR$
perimeter of $\triangle WXY$ = $\frac{3 + 4 + 5}{6 + 8 + 10}$
= $\frac{12}{24} = \frac{1}{2}$

b.
$$\frac{\text{area of } \triangle PQR}{\text{area of } \triangle WXZ} = \frac{\frac{1}{2}(4)(4)}{\frac{1}{2}(8)(6)}$$
$$= \frac{6}{24} = \frac{1}{4}$$

All rights reserved.

c. The ratio of areas is square of ratio of perimeters.

29. Let ℓ_1 and w_1 be dimensions of rect. *ABCD*; let ℓ_2 and w_2 be dimensions of rect. *EFGH*.

$$A_1 = \ell_1 w_1$$

 $135 = \ell_1(9)$
 $\ell_1 = 15 \text{ in.}$

Think: Rects. are ~; let scale factor be s.

Think: Hects. are
$$\sim$$
;
 $\frac{\ell_2}{\ell_1} = \frac{w_2}{w_1} = s$
 $\ell_2 = s\ell_1, w_2 = sw_1$
 $A_2 = \ell_2 w_2$
 $= (s\ell_1)(sw_1)$
 $= s^2 A_1$
 $240 = 135s^2$
 $\frac{16}{9} = s^2$
 $s = \frac{4}{3}$
 $\ell_2 = s\ell_1$
 $= \frac{4}{3}(15) = 20$ in.
 $w_2 = sw_1$
 $= \frac{4}{3}(9) = 12$ in.

30. Check students' work.

$$\frac{\text{scale length}}{\text{actual length}} = \frac{\ell}{94} = \frac{0.25}{10}$$

$$10\ell = 23.5$$

$$\ell = 2.35 \text{ in.}$$

$$\frac{\text{scale width}}{\text{actual width}} = \frac{w}{50} = \frac{0.25}{10}$$

$$10w = 12.5$$

$$w = 1.25 \text{ in.}$$

31a.~ ratio =
$$\frac{1 \text{ in.}}{2 \text{ ft}}$$

= $\frac{1 \text{ in.}}{24 \text{ in.}}$ = $\frac{1}{24}$

- **b.** actual dimensions are 24(2) = 48 in. and 24(3) = 72 in. actual area = (48)(72) = 3456 in. actual area = (2)(3) = 6 in. actual area = $\frac{3456}{6} = \frac{1}{576}$
- **c.** actual area = $(4 \text{ ft})(6 \text{ ft}) = 24 \text{ ft}^2$
- **32.** In photo, height of person $\approx \frac{1}{2}$ in. and height of statue $\approx 1\frac{5}{8}$ in.

actual height of statue

height of statue in photo
$$= \frac{\text{actual height of person}}{\text{height of statue in person}}$$

$$\frac{h}{1.625} \approx \frac{5}{0.5}$$

$$0.5h \approx 8$$

$$h \approx 16 \text{ ft}$$

33. $\frac{\text{map length}}{\text{actual length}} = \text{scale factor}$ $\frac{\ell}{1 \text{ km}} = \frac{1 \text{ cm}}{900,000 \text{ cm}} = \frac{1 \text{ cm}}{9 \text{ km}}$ $\ell = \frac{1}{\alpha} \text{ cm}$

176

- 34. By \triangle Midseg. Thm., def. of mdpt., and SSS \cong , $\triangle XYZ \cong \triangle ZJX$; so \triangle have same height h. Therefore height of $\triangle JKL = h + h = 2h$. Since KL = 2ZX, area of $\triangle JKL = \frac{1}{2}(2ZX)(2h) = 2(ZX)h = 4\left(\frac{1}{2}(ZX)(h)\right) = 4(area of \triangle JKL) = \frac{4}{1}(area of \triangle JKL) = \frac{4}{1}(area of \triangle JKL) = \frac{4}{1}(area of \triangle JKL)$
- **35.** 1 cm : 5 m; Since each cm will represent 5 m, this drawing will be $\frac{1}{5}$ size of the 1 cm : 1 m drawing.

36.
$$\frac{4(x-2)}{4(2x)} = \frac{x-2}{2x} = \frac{4}{9}$$

$$9(x-2) = 8x$$

$$9x - 18 = 8x$$

$$x = 18$$

$$AB = 18 - 2 = 16 \text{ units}$$

$$HE = 2(18) = 36 \text{ units}$$

- **37.** With a scale of 1:1, drawing is same size as actual object.
- **38.** Suppose x and y are whole-number side lengths of smaller square and larger square. Then $2x^2 = y^2$. Thus $x\sqrt{2} = y$. A whole number that is multiplied by $\sqrt{2}$ cannot equal a whole number, since $\sqrt{2}$ is irrational.

TEST PREP. PAGE 493

39. D area of $\triangle RST = (\text{scale factor})^2 (\text{area of } \triangle ABC)$ = $\left(\frac{15}{10}\right)^2 (24) = \frac{9}{4} (24) = 54 \text{ m}^2$

40. G
$$\frac{3.75}{\ell} = \frac{0.25}{1}$$

$$3.75 = 0.25\ell$$

$$\ell = 15 \text{ ft}$$

- **41.** C. Ratio of perimeters = \sim ratio = $\frac{4}{9}$
- 42. F area of $\triangle 2 = (\sim \text{ratio})^2(\text{area of } \triangle 1)$ $= \left(\frac{1}{2}\right)^2(16) = 4 \text{ ft}^2$

CHALLENGE AND EXTEND, PAGE 494

43a.
$$\frac{x}{1.5 \times 10^8 \text{ km}} = \frac{1 \text{ km}}{10^9 \text{ km}} = \frac{10^3 \text{ m}}{10^9 \text{ km}}$$

 $x = \frac{10^3 \text{ m}}{10^9 \text{ km}} (1.5 \times 10^8 \text{ km})$
 $= 1.5 \times 10^2 \text{ m or } 150 \text{ m}$

$$= 1.5 \times 10^{2} \text{ m or } 150 \text{ m}$$

$$43b. \frac{d}{1.28 \times 10^{4} \text{ km}} = \frac{10^{3} \text{ m}}{10^{9} \text{ km}}$$

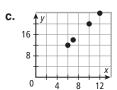
$$d = \frac{10^{3} \text{ m}}{10^{9} \text{ km}} (1.28 \times 10^{4} \text{ km})$$

$$= 1.28 \times 10^{-2} \text{ m or } 1.28 \text{ cm}$$

- **44.** It is given that $\triangle ABC \sim \triangle DEF$. Let $\frac{AB}{DE} = x$. Then AB = DEx by Mult. Prop. of =. Similarly, BC = EFx and AC = DFx. By Add. Prop. of =, AB + BC + AC = DEx + EFx + DFx. Thus AB + BC + AC = x (DE + EF + DF). By Div. Prop. of =, $\frac{AB + BC + AC}{DE + EF + DF} = x$. By subst., $\frac{AB + BC + AC}{DE + EF + DF} = \frac{AB}{DE}$.
- **45.** It is given that $\triangle PQR \sim \triangle WXY$. Draw \bot s from Q and X to meet \overline{PR} at S and \overline{WY} at Z. By def. of \sim polygons, $\frac{PQ}{WX} = \frac{QR}{XY} = \frac{PR}{WY}$, and $\angle P \cong \angle W$. In $\triangle PQS$ and $\triangle WXZ$, $\angle PSQ \cong \angle WZX$. Thus $\triangle PQS \sim \triangle WXZ$ by $\triangle AA \sim \frac{PQ}{WZ} = \frac{QS}{XZ} = \frac{PS}{WZ}$ by def. of \sim polygons. $\frac{QR}{XY} = \frac{SP}{ZW}$ by subst. $\frac{A\text{rea of }\triangle PQR}{\text{area of }\triangle WXY} = \frac{PR}{WY} \cdot \frac{QS}{XZ} = \frac{PR^2}{WY^2}$.

46a. $\frac{6}{WX} = \frac{1}{2}$	$\frac{7}{XY} = \frac{1}{2}$
WX = 12	XY = 14
$\frac{10}{YZ} = \frac{1}{2}$	$\frac{12}{WZ} = \frac{1}{2}$
YZ = 20	WZ = 24

b.	Q	uad. <i>PQRS</i>	Quad. WXYZ		
	Side Length (m)		Side	Length (m)	
	PQ	6	WX	12	
	QR	7	XY	14	
	RS	10	YZ	20	
	PS	12	WZ	24	



d. WX = 12 = 2PQ; similarly XY = 2QR, YZ = 2RS, and WZ = 2PS. So eqn. is y = 2x.

SPIRAL REVIEW, PAGE 494

47.
$$(x-3)^2 = 49$$

 $x-3 = \pm 7$
 $x = 3 \pm 7$
 $= 10 \text{ or } -4$
48. $(x+1)^2 - 4 = 0$
 $(x+1)^2 = 4$
 $x+1 = \pm 2$
 $x = -1 \pm 2$
 $= -3 \text{ or } 1$

49.
$$4(x+2)^2 - 28 = 0$$

 $4(x+2)^2 = 28$
 $(x+2)^2 = 7$
 $x+2 = \pm\sqrt{7}$
 $x = -2 \pm\sqrt{7}$
 $\approx 0.65 \text{ or } -4.65$

50. slope of $\overline{AB} = \frac{2}{3}$; slope of $\overline{CD} = \frac{-2}{-3} = \frac{2}{3}$ slope of $\overline{BC} = \text{slope of } \overline{AD} = 0$ $\overline{AB} \parallel \overline{CD}$ and $\overline{BC} \parallel \overline{AD}$, so \overline{ABCD} is a \square .

- **51.** slope of $\overline{JK} = \frac{2}{2} = 1$; slope of $\overline{LM} = \frac{-2}{-2} = 1$ slope of $\overline{KL} = \frac{-3}{3} = -1$; slope of $\overline{JM} = \frac{-3}{3} = -1$ $\overline{JK} \parallel \overline{LM}$ and $\overline{KL} \parallel \overline{JM}$, so JKLM is a \square .
- **52.** 58x = 26yv: x = 58:26 = 29:13

7-6 DILATIONS AND SIMILARITY IN THE **COORDINATE PLANE, PAGES 495-500**

CHECK IT OUT! PAGES 495-497

1. Step 1 Multiply vertices of photo A(0, 0), B(0, 4), C(3, 4), D(3, 0) by $\frac{1}{2}$.

$$C(3, 4), D(3, 0)$$
 by $\frac{1}{2}$.
Rect. $ABCD$ Rect. $A'B'C'D'$
 $A(0, 0) \rightarrow A'\left(\frac{1}{2}(0), \frac{1}{2}(0)\right) \rightarrow A'(0, 0)$
 $B(0, 0) \rightarrow B'\left(\frac{1}{2}(0), \frac{1}{2}(4)\right) \rightarrow B'(0, 2)$
 $C(0, 0) \rightarrow C'\left(\frac{1}{2}(3), \frac{1}{2}(4)\right) \rightarrow C'(1.5, 2)$
 $D(0, 0) \rightarrow D'\left(\frac{1}{2}(3), \frac{1}{2}(0)\right) \rightarrow D'(1.5, 0)$

Step 2 Plot pts. A'(0, 0). B'(0, 2), C'(1.5, 2), and D'(1.5, 0). Draw the rectangle.

Check student's work

2. Since $\triangle MON \sim \triangle POQ$.

$$\frac{PO}{MO} = \frac{OQ}{ON}$$

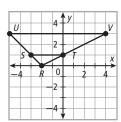
$$\frac{-15}{-10} = \frac{3}{2} = \frac{-30}{ON}$$

$$3ON = -60$$

$$ON = -20$$

N lies on y-axis, so its x-coord. is 0. Since ON = -20, its y-coord. must be -20. Coords. of N are (0, -20). $(0, -30) \rightarrow \left(\frac{2}{3}(0), \frac{2}{3}(-30)\right) \rightarrow (0, -20)$, so scale factor is $\frac{2}{2}$.

3. Step 1 Plot pts. and draw &.



Step 2 Use Dist. Formula to find side lengths.

$$RS = \sqrt{(-3+2)^2 + (1-0)^2} = \sqrt{2}$$

$$RT = \sqrt{(0+2)^2 + (1-0)^2} = \sqrt{5}$$

$$RU = \sqrt{(-5+2)^2 + (3-0)^2} = \sqrt{18} = 3\sqrt{2}$$

$$RV = \sqrt{(4+2)^2 + (3-0)^2} = \sqrt{45} = 3\sqrt{5}$$
Step 3 Find similarity ratio.

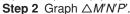
$$\frac{RS}{RU} = \frac{\sqrt{2}}{3\sqrt{2}} = \frac{1}{3}$$

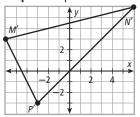
$$\frac{RT}{RV} = \frac{\sqrt{5}}{3\sqrt{5}} = \frac{1}{3}$$
Since $\frac{RS}{RU} = \frac{RT}{RV}$ and $\angle R \cong \angle R$ by Reflex. Prop. of \cong , $\triangle RST \sim \triangle RUV$ by SAS \sim .

4. Step 1 Multiply each coord. by 3 to find coords of vertices of $\triangle M'N'P'$.

$$M(-2, 1) \rightarrow M'(3(-2), 3(1)) = M'(-6, 3)$$

 $N(2, 2) \rightarrow N'(3(2), 3(2)) = N'(6, 6)$
 $P(-1, -1) \rightarrow P'(3(-1), 3(-1)) = P'(-3, -3)$





Step 3 Use Dist. Formula to find side lengths.

$$MN = \sqrt{(2+2)^2 + (2-1)^2} = \sqrt{17}$$

$$M'N' = \sqrt{(6+6)^2 + (6-3)^2} = \sqrt{153} = 3\sqrt{17}$$

$$NP = \sqrt{(-1-2)^2 + (-1-2)^2} = \sqrt{18} = 3\sqrt{2}$$

$$N'P' = \sqrt{(-3-6)^2 + (-3-6)^2} = \sqrt{162} = 9\sqrt{2}$$

$$MP = \sqrt{(-1+2)^2 + (-1-1)^2} = \sqrt{5}$$

$$M'P' = \sqrt{(-3+6)^2 + (-3-3)^2} = \sqrt{45} = 3\sqrt{5}$$

Step 4 Find similarity ratio.

$$\frac{M'N'}{MN} = \frac{3\sqrt{17}}{\sqrt{17}} = 3, \frac{N'P'}{NP} = \frac{9\sqrt{2}}{3\sqrt{2}} = 3, \frac{M'P'}{MP} = \frac{3\sqrt{5}}{\sqrt{5}} = 3$$
Since $\frac{M'N'}{MN} = \frac{N'P'}{NP} = \frac{M'P'}{MP}, \triangle M'N'P' \sim \triangle MNP$ by SSS ~.

THINK AND DISCUSS, PAGE 497

1. The scale factor is 4, since each coord, of preimage is multiplied by 4 in order to get coords. of image.

178

2.	Definition: A dilation is a transformation for which the preimage and image are ~.	Property: Dilations change the size, but not the shape, of a figure.
	Example: Possible answer:	Nonexample: Possible answer:

EXERCISES, PAGES 498–500 GUIDED PRACTICE, PAGE 498

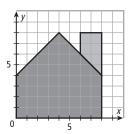
- **1.** dilation
- 2. scale factor
- **3. Step 1** Multiply vertices of figure A(0, 0), B(0, 2), C(2, 4), D(3, 3), E(3, 4), F(4, 4), G(4, 2), H(4, 0) by 2. Fig. ABCDEFGH Fig. A'B'C'D'E'F'G'H' $A(0, 0) \rightarrow A'(2(0), 2(0)) \rightarrow A'(0, 0)$ $B(0, 2) \rightarrow B'(2(0), 2(2)) \rightarrow B'(0, 4)$ $C(2, 4) \rightarrow C'(2(2), 2(4)) \rightarrow C'(4, 8)$ $D(3, 3) \rightarrow D'(2(3), 2(3)) \rightarrow D'(6, 6)$ $E(3, 4) \rightarrow E'(2(3), 2(4)) \rightarrow E'(6, 8)$ $F(4, 4) \rightarrow F'(2(4), 2(4)) \rightarrow F'(8, 8)$ $G(4, 2) \rightarrow G'(2(4), 2(2)) \rightarrow G'(8, 4)$
 - **Step 2** Plot pts. *A'*, *B'*, *C'*, *D'*, *E'*, *F'*, *G'*, and *H'*. Draw the figure.

Since △AOB ~ △COD,

5. Since $\triangle ROS \sim \triangle POQ$,

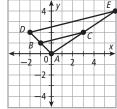
AO = OB

 $H(4, 0) \rightarrow H'(2(4), 2(0)) \rightarrow H'(8, 0)$



- $\frac{CO}{CO} = \frac{OD}{OD}$ $\frac{10}{CO} = \frac{6}{15}$ 150 = 6CO CO = 25C lies on x-axis, so its y-coord. is 0. Since CO = 25, its x-coord. must be 25. Coords. of C are (25, 0). $(10, 0) \rightarrow \left(\frac{5}{2}(10), \frac{5}{2}(0)\right) \rightarrow (25, 0), \text{ so scale factor}$
- $\frac{RO}{PO} = \frac{OS}{OQ}$ $\frac{4}{10} = \frac{OS}{-20}$ -80 = 10OS OS = -8 S lies on y-axis, so its x-coord. is 0. Since OS = -8, its y-coord. must be -8. Coords. of S are (0, -8). $(0, -20) \rightarrow \left(\frac{2}{5}(0), \frac{2}{5}(-20)\right) \rightarrow (0, -8), \text{ so scale factor is } \frac{5}{2}.$

6. Step 1 Plot pts. and draw \(\triangle \).



Step 2 Use Dist. Formula to find side lengths.

$$AB = \sqrt{(-1 - 0)^2 + (1 - 0)^2} = \sqrt{2}$$

$$AC = \sqrt{(3 - 0)^2 + (2 - 0)^2} = \sqrt{13}$$

$$AD = \sqrt{(-2 - 0)^2 + (2 - 0)^2} = \sqrt{8} = 2\sqrt{2}$$

$$AE = \sqrt{(6 - 0)^2 + (4 - 0)^2} = \sqrt{52} = 2\sqrt{13}$$

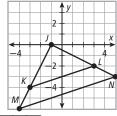
Step 3 Find similarity ratio.

$$\frac{AB}{AD} = \frac{\sqrt{2}}{2\sqrt{2}} = \frac{1}{2}$$

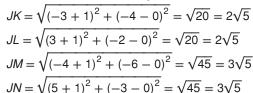
$$\frac{AC}{AE} = \frac{\sqrt{13}}{2\sqrt{13}} = \frac{1}{2}$$

Since
$$\frac{AB}{AD} = \frac{AC}{AE}$$
 and $\angle A \cong \angle A$ by Reflex. Prop. of \cong , $\triangle ABC \sim \triangle ADE$ by SAS \sim .

Step 1 Plot pts. and draw ▲.



Step 2 Use Dist. Formula to find side lengths.



Step 3 Find similarity ratio.

$$\frac{JK}{JM} = \frac{2\sqrt{5}}{3\sqrt{5}} = \frac{2}{3}$$

$$\frac{JL}{JN} = \frac{2\sqrt{5}}{3\sqrt{5}} = \frac{2}{3}$$
Since $\frac{JK}{JM} = \frac{JL}{JN}$ and $\angle J \cong \angle J$ by Reflex. Prop. of \cong , $\triangle JKL \sim \triangle JMN$ by SAS \sim .

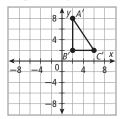
8. Step 1 Multiply each coord. by 2 to find coords of vertices of $\triangle A'B'C'$.

$$A(1, 4) \rightarrow A'(2(1), 2(4)) = A'(2, 8)$$

$$B(1, 1) \rightarrow B'(2(1), 2(1)) = B'(2, 2)$$

$$C(3, 1) \rightarrow C'(2(3), 2(1)) = C'(6, 2)$$

Step 2 Graph $\triangle A'B'C'$.



Step 3 Use Dist. Formula to find side lengths.

$$AB = \sqrt{(1-1)^2 + (1-4)^2} = 3$$

$$A'B' = \sqrt{(2-2)^2 + (2-8)^2} = 6$$

$$BC = \sqrt{(3-1)^2 + (1-1)^2} = 2$$

$$B'C' = \sqrt{(6-2)^2 + (2-2)^2} = 4$$

$$AC = \sqrt{(3-1)^2 + (1-4)^2} = \sqrt{13}$$

$$A(C) = \sqrt{(G - 1)^2 + (1 - 4)^2} = \sqrt{13}$$

$$A'C' = \sqrt{(6-2)^2 + (2-8)^2} = \sqrt{52} = 2\sqrt{13}$$

Step 4 Find similarity ratio.

$$\frac{A'B'}{AB} = \frac{6}{3} = 2, \frac{B'C'}{BC} = \frac{4}{2} = 2, \frac{A'C'}{AC} = \frac{2\sqrt{13}}{\sqrt{13}} = 2$$

Since $\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{A'C'}{AC}$, $\triangle ABC \sim \triangle A'B'C'$ by

SSS ~

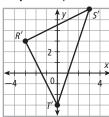
9. Step 1 Multiply each coord. by $\frac{3}{2}$ to find coords of vertices of $\triangle R'S'T'$.

$$R(-2, 2) \rightarrow R'(\frac{3}{2}(-2), \frac{3}{2}(2)) = R'(-3, 3)$$

$$S(2, 4) \rightarrow S'\left(\frac{3}{2}(2), \frac{3}{2}(4)\right) = S'(3, 6)$$

$$T(0, -2) \rightarrow T(\frac{3}{2}(0), \frac{3}{2}(-2)) = T(0, -3)$$

Step 2 Graph $\triangle R'S'T'$.



Step 3 Use Dist. Formula to find side lengths.

$$RS = \sqrt{(2+2)^2 + (4-2)^2} = \sqrt{20} = 2\sqrt{5}$$

$$R'S' = \sqrt{(3+3)^2 + (6-3)^2} = \sqrt{45} = 3\sqrt{5}$$

$$ST = \sqrt{(0-2)^2 + (-2-4)^2} = \sqrt{40} = 2\sqrt{10}$$

$$S'T' = \sqrt{(0-3)^2 + (-3-6)^2} = \sqrt{90} = 3\sqrt{10}$$

$$RT = \sqrt{(0+2)^2 + (-2-2)^2} = \sqrt{20} = 2\sqrt{5}$$

$$R'T' = \sqrt{(0+3)^2 + (-3-3)^2} = \sqrt{45} = 3\sqrt{5}$$

Step 4 Find similarity ratio.

$$\frac{R'S'}{RS} = \frac{3\sqrt{5}}{2\sqrt{5}} = \frac{3}{2}, \frac{S'T'}{ST} = \frac{3\sqrt{10}}{2\sqrt{10}} = \frac{3}{2},$$

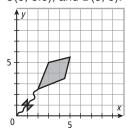
$$\frac{R'T'}{RT} = \frac{3\sqrt{5}}{2\sqrt{5}} = \frac{3}{2}$$

Since
$$\frac{R'S'}{RS} = \frac{S'T}{ST} = \frac{R'T'}{RT}$$
, $\triangle RST \sim \triangle R'S'T'$ by SSS \sim .

PRACTICE AND PROBLEM SOLVING, PAGE 499

10. Coords. of kite are A(4, 5), B(9, 7), C(10, 11), and D(6, 10).

Coords. of image are A(2, 2.5), B(4.5, 3.5), C(5, 5.5), and D(3, 5).



11. $\frac{UO}{XO} = \frac{OV}{OY}$ $\frac{-9}{XO} = \frac{-3}{-8}$ 72 = -3XO

$$\frac{-9}{XO} = \frac{-3}{-8}$$

$$72 = -3XC$$

$$XO = -24$$

$$X$$
 on x -axis $\rightarrow X = (-24, 0)$

X on x-axis
$$\to X = (-24, 0)$$

 $(-9, 0) \to \left(\frac{8}{3}(-9), \frac{8}{3}(0)\right) = (-24, 0)$, so scale factor is $\frac{8}{3}$.

12.
$$\frac{MO}{KO} = \frac{ON}{OL}$$

$$\frac{16}{KO} = \frac{-24}{-15}$$

$$-240 = -24KO$$

$$KO = 10$$

$$K \text{ on } y\text{-axis} \to K = (0, 10)$$

$$(0, 16) \to \left(\frac{5}{8}(0), \frac{5}{8}(16)\right) = (0, 10), \text{ so scale factor is } \frac{5}{8}.$$

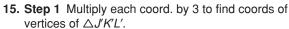
13.
$$DE = \sqrt{2^2 + 4^2} = 2\sqrt{5}$$
, $DF = \sqrt{4^2 + 4^2} = 4\sqrt{2}$
 $DG = \sqrt{3^2 + 6^2} = 3\sqrt{5}$, $DH = \sqrt{6^2 + 6^2} = 6\sqrt{2}$
 $\frac{DE}{DG} = \frac{2\sqrt{5}}{3\sqrt{5}} = \frac{2}{3}$, $\frac{DF}{DH} = \frac{4\sqrt{2}}{6\sqrt{2}} = \frac{2}{3}$
 $\angle D \cong \angle D$ by Reflex. Prop. of \cong . So $\triangle DEF \sim \triangle DGH$ by SAS \sim .

14.
$$MN = \sqrt{5^2 + 10^2} = 5\sqrt{5}, MP = \sqrt{15^2 + 5^2} = 5\sqrt{10}$$

$$MQ = \sqrt{10^2 + 20^2} = 10\sqrt{5}, MR = \sqrt{30^2 + 10^2} = 10\sqrt{10}$$

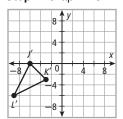
$$\frac{MN}{MQ} = \frac{5\sqrt{5}}{10\sqrt{5}} = \frac{1}{2}, \frac{MP}{MR} = \frac{5\sqrt{10}}{10\sqrt{10}} = \frac{1}{2}$$

$$\angle M \cong \angle M \text{ by Reflex. Prop. of } \cong . \text{ So } \triangle MNP \sim \triangle MQR \text{ by SAS } \sim.$$



$$J(-2, 0) \rightarrow J'(3(-2), 3(0)) = J'(-6, 0)$$

 $K(-1, -1) \rightarrow K'(3(-1), 3(-1)) = K'(-3, -3)$
 $L(-3, -2) \rightarrow K'(3(-3), 3(-2)) = L'(-9, -6)$
Step 2 Graph $\triangle J'K'L'$.



Step 3 Find side lengths.

$$JK = \sqrt{1^2 + 1^2} = \sqrt{2}$$
, $J'K' = \sqrt{3^2 + 3^2} = 3\sqrt{2}$
 $KL = \sqrt{2^2 + 1^2} = \sqrt{5}$, $K'L' = \sqrt{6^2 + 3^2} = 3\sqrt{5}$
 $JL = \sqrt{1^2 + 2^2} = \sqrt{5}$, $J'L' = \sqrt{3^2 + 6^2} = 3\sqrt{5}$
Step 4 Verify similarity.

Step 4 Verify similarity. Since
$$\frac{J'K'}{JK} = \frac{K'L'}{KL} = \frac{J'L'}{JL} = 3$$
, $\triangle JKL \sim \triangle J'K'L'$ by SSS \sim .

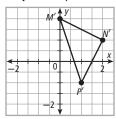
16. Step 1 Multiply each coord. by $\frac{1}{2}$ to find coords of vertices of $\triangle M'N'P'$. $M(0, 4) \rightarrow M'\left(\frac{1}{2}(0), \frac{1}{2}(4)\right) = M'(0, 2)$

$$M(0, 4) \rightarrow M'(\frac{1}{2}(0), \frac{1}{2}(4)) = M'(0, 2)$$

$$N(4, 2) \rightarrow N'(\frac{1}{2}(4), \frac{1}{2}(2)) = N'(2, 1)$$

$$P(2, -2) \rightarrow P'\left(\frac{1}{2}(2), \frac{1}{2}(-2)\right) = P'(1, -1)$$

Step 2 Graph $\triangle M'N'P'$.



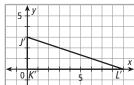
Step 3 Find side lengths.

$$MN = \sqrt{4^2 + 2^2} = 2\sqrt{5}, M'N' = \sqrt{2^2 + 1^2} = \sqrt{5}$$

 $NP = \sqrt{2^2 + 4^2} = 2\sqrt{5}, N'P' = \sqrt{1^2 + 2^2} = \sqrt{5}$
 $MP = \sqrt{2^2 + 6^2} = 2\sqrt{10}, M'P' = \sqrt{1^2 + 3^2} = \sqrt{10}$

Since
$$\frac{M'N'}{MN} = \frac{N'P'}{NP} = \frac{M'P'}{MP} = \frac{1}{2}$$
, $\triangle MNP \sim \triangle M'N'P'$ by SSS \sim .

- 17. It is not a dilation; it changes shape of transformed figure.
- **18.** Solution B is incorrect. Scale factor is ratio of a lin. measure of image to corr. lin. measure of preimage, so scale factor is $\frac{UW}{RT} = \frac{3}{2}$
- **19.** They are reciprocals. Similarity ratio of $\triangle ABC$ to $\triangle A'B'C'$ is $\frac{AB}{A'B'}$. Scale factor is $\frac{A'B'}{AB}$.
- 20a. Should use origin as vertex of rt. ∠; 1 unit reps. 60 cm \rightarrow 3 units rep. 180 cm; so coords. are J(0, 1), K(0, 0), L(3, 0).
 - **b.** $J \rightarrow J'(3(0), 3(1)) = J'(0, 3)$ $K \rightarrow K'(3(0), 3(0)) = K'(0, 0)$ $L \rightarrow L'(3(3), 3(0)) = L'(9, 0)$



TEST PREP. PAGE 500

- Check similarity ratio: $\frac{2.4}{4} = \frac{3}{5} = \frac{-6}{10}$
- 22. H Perimeter is a lin. measure. So P' = 2P = 2(60) = 120.

23. A

$$AB = 4$$
, $AC = BC = \sqrt{2^2 + 4^2} = 2\sqrt{5}$
 $DE = |3 - 1| = 2$, $DF = EF = \sqrt{1^2 + 2^2} = \sqrt{5}$
 $\frac{DE}{AB} = \frac{EF}{BC} = \frac{DF}{AC} = \frac{1}{2}$

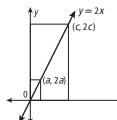
24. 15

$$A \rightarrow A'(3(3), 3(2)) = A'(9, 6)$$

 $B \rightarrow B'(3(7), 3(5)) = B'(21, 15)$
 $A'B' = \sqrt{12^2 + 9^2} = \sqrt{225} = 15$

CHALLENGE AND EXTEND, PAGE 500

- **25.** Possible \sim statements: $\triangle XYZ \sim \triangle MNP$, $\triangle MPN$, $\triangle NMP$, $\triangle NPM$, $\triangle PMN$, or $\triangle PNM$. For each \sim statement, Z could lie either above or below \overleftrightarrow{XY} . So there are 2(6) = 12 different &. They are all different, since MN, NP, and MP are all \neq .
- **26.** scale factor = $\frac{XY}{MP} = \frac{2}{4} = \frac{1}{2}$ From M to N is rise of 2 and run of 1. So from X to Z is *either* rise of 1 and run of $\frac{1}{2}$ or rise of -1 and run of $\frac{1}{2}$. Therefore $Z = \left(1 \pm \frac{1}{2}, -2 \pm 1\right) = \left(1\frac{1}{2}, -1\right)$ or $\left(1\frac{1}{2}, -3\right)$.
- **27.** All corr. & of rects. are \cong because they are all rt. &. Suppose 1st rect. has vertex on line y=2x at (a,b). This pt. is a solution to the eqn., so b=2a, and coords. of vertex are (a,2a). Similarly, for 2nd rect., coords. of vertex on line y=2x must be (c,2c).



- 1st rect. has dimensions a and 2a, and 2nd rect. has dimensions c and 2c. So all ratios of corr. sides $=\frac{c}{a}$. Therefore rects. are \sim by
- 28. scale factor = $\frac{DE}{AB} = \frac{6}{3} = 2$ From A to C is rise of 2 and run of 1. 2 positions for F are reflections in horiz. line \overrightarrow{DE} . So from D to F is rise of ± 4 and run of 2. Therefore $F = (1 + 2, -1 \pm 4) = (3, 3)$ or (3, -5).

SPIRAL REVIEW, PAGE 500

- **29.** Possible answer: $2(50) + 5 + w \ge 250$ $105 + w \ge 250$
- **30.** Think: $\triangle DEH \cong \triangle FEH$ by HL. So by CPCTC, $\overline{HF} \cong \overline{DF}$ HF = DF = 6.71
- **31.** Think: By Isosc. \triangle Thm., $\angle EDH \cong \angle EFH$, so by Rt. $\angle \cong$ Thm., $3rd \triangleq$ Thm, and ASA, $\triangle DFG \cong \triangle FDJ$. So by CPCTC, $\overline{JF} \cong \overline{GD}$ JF = GD = 5
- 32. Think: Use Pyth. Thm. $CF = \sqrt{CH^2 + HF^2} \\
 = \sqrt{2^2 + 6.71^2} \approx 7.00$

33.
$$\frac{RT}{UV} = \frac{RS}{US}$$
$$\frac{RT}{9} = \frac{6+2}{6} = \frac{4}{3}$$
$$3RT = 36$$
$$RT = 12$$

34.
$$\frac{VT}{VS} = \frac{RU}{US}$$
$$\frac{x}{x+3} = \frac{2}{6} = \frac{1}{3}$$
$$3x = x+3$$
$$2x = 3$$
$$x = 1.5$$
$$VT = x = 1.5$$

35.
$$ST = SV + VT$$

= $x + 3 + x$
= $2x + 3$
= $2(1.5) + 3 = 6$

DIRECT VARIATION, PAGE 501

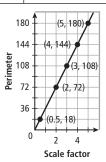
TRY THIS, PAGE 501

1. Step 1 Make a table to record data.

Scale Factor	Side Length $s = x(6)$	Perimeter $P=6s$
1/2	3	18
2	12	72
3	18	108
4	24	144
5	30	180

Step 2 Graph pts.

Since pts. are collinear and line that contains them includes origin, relationship is a direct variation.



Step 3 Find eqn. of direct variation.

$$y = kx$$

$$180 = k(5)$$

$$36 = k$$

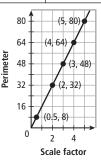
Thus constant of variation is 36.

2. Step 1 Make a table to record data.

Scale	Sic	de Lengt	Perimeter	
Factor x	a = x(3)	b = x(6)	c = x(7)	P=a+b+c
1/2	1 1 2	3	3 1 2	8
2	6	12	14	32
3	9	18	21	48
4	12	24	28	64
5	15	30	35	80

Step 2 Graph pts.

Since pts. are collinear and line that contains them includes origin, relationship is a direct variation.



Step 3 Find eqn. of direct variation.

$$y = kx$$

$$80 = k(5)$$

$$k = 16$$

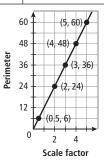
Thus constant of variation is 16.

3. Step 1 Make a table to record data.

Scale Factor	Side Length $s = x(3)$	Perimeter $P=4s$
1/2	1 <u>1</u>	6
2	6	24
3	9	36
4	12	48
5	15	60

Step 2 Graph pts.

Since pts. are collinear and line that contains them includes origin, relationship is a direct variation.



Step 3 Find eqn. of direct variation.

$$y = kx$$

$$60 = k(5)$$

$$k = 12$$

Thus constant of variation is 12.

MULTI-STEP TEST PREP, PAGE 502

1.
$$\frac{EG}{FH} = \frac{GJ}{HK} = \frac{JC}{KC} = \frac{AE}{BF} = \frac{42.2}{40} = 1.055$$

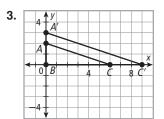
 $EG = 1.055FH$
 $= 1.055(40) = 42.2 \text{ cm}$
 $GJ = 1.055HK$
 $= 1.055(35) \approx 36.9 \text{ cm}$
 $JC = 1.055KC$

 $= 1.055(35) \approx 36.9 \text{ cm}$

2. area of
$$\triangle ABC = \frac{1}{2}(BC)(AB)$$

= $\frac{1}{2}(40 + 40 + 35 + 35)(50)$
= 3750 cm^2

Think: Use Proportional Perimeters and Areas Thm. area of drawing = $(\text{scale factor})^2(\text{area of }\triangle ABC)$ = $\left(\frac{1}{25}\right)^2(3750)$ = $\frac{1}{625}(3750) = 6 \text{ cm}^2$



7B READY TO GO ON?, PAGE 503

1.
$$\frac{SI}{QT} = \frac{HI}{PT}$$

$$\frac{ST}{ST + 16} = \frac{14}{14 + 12}$$

$$\frac{26ST}{26ST} = \frac{14}{14(ST + 16)}$$

$$26ST = \frac{14}{14ST} + \frac{14}{1$$

3.
$$\frac{FH}{EG} = \frac{HK}{GJ}$$
$$\frac{FH}{3.6} = \frac{2}{2.4}$$
$$2.4FH = 7.2$$
$$FH = 3 \text{ cm}$$

4.
$$\frac{\text{plan length of } \overline{AB}}{AB} = \frac{0.25}{AB} = \frac{1.5}{60}$$

 $15 = 1.5AB$
 $AB = 10 \text{ ft}$

5.
$$\frac{\text{plan length of } \overline{BC}}{BC} = \frac{0.75}{BC} = \frac{1.5}{60}$$
$$45 = 1.5BC$$
$$BC = 30 \text{ ft}$$

6.
$$\frac{\text{plan length of } \overline{CD}}{CD} = \frac{1}{CD} = \frac{1.5}{60}$$
$$60 = 1.5CD$$
$$CD = 40 \text{ ft}$$

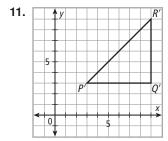
7.
$$\frac{\text{plan length of } \overline{EF}}{EF} = \frac{0.5}{EF} = \frac{1.5}{60}$$
$$30 = 1.5EF$$
$$EF = 20 \text{ ft}$$

- **8.** 5 ft 3 in. = 5(12) + 3 in. = 63 in. 5 ft 10 in. = 5(12) + 10 in. = 70 in. 40 ft = 40(12) in. = 480 in. $\frac{h}{63} = \frac{480}{70}$ 70h = 63(480)h = 432 in. = 36 ft
- 9. By the Dist. Formula:

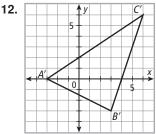
$$AD = \sqrt{1^2 + 2^2} = \sqrt{5}$$
; $AB = \sqrt{2^2 + 4^2} = 2\sqrt{5}$
 $AE = \sqrt{2^2 + 1^2} = \sqrt{5}$; $AC = \sqrt{4^2 + 2^2} = 2\sqrt{5}$
 $\angle A \cong \angle A$ by the Reflex. Prop. of \cong .
By SAS \sim , $\triangle ADE \sim \triangle ABC$.

10. By the Dist. Formula:

$$RS = \sqrt{2^2 + 1^2} = \sqrt{5}$$
; $RU = \sqrt{4^2 + 2^2} = 2\sqrt{5}$
 $RT = |-3 - 0| = 3$; $RV = |6 - 0| = 6$
 $\frac{RS}{RU} = \frac{RT}{RV} = \frac{1}{2}$. $\angle SRT \cong \angle URV$ by the Vert. & Thm.
By SAS \sim , $\triangle RST \sim \triangle RUV$.



$$\begin{split} PQ &= QR = 2; \ P'Q' = Q'R' = 6 \\ PR &= \sqrt{2^2 + 2^2} = 2\sqrt{2}; \ P'R' = \sqrt{6^2 + 6^2} = 6\sqrt{2} \\ \frac{P'Q'}{PQ} &= \frac{Q'R'}{QR} = \frac{6}{2} = 3; \frac{P'R'}{PR} = \frac{6\sqrt{2}}{2\sqrt{2}} = 3 \\ \text{By SSS} \sim, \ \triangle P'Q'R' \sim \triangle PQR. \end{split}$$



All rights reserved.

$$AB = \sqrt{4^2 + 2^2} = 2\sqrt{5}; A'B' = \sqrt{6^2 + 3^2} = 3\sqrt{5}$$

$$BC = \sqrt{2^2 + 6^2} = 2\sqrt{10}; B'C' = \sqrt{3^2 + 9^2} = 3\sqrt{10}$$

$$AC = \sqrt{6^2 + 4^2} = 2\sqrt{13}; A'C' = \sqrt{9^2 + 6^2} = 3\sqrt{13}$$

$$\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{A'B'}{AB} = \frac{3}{2}$$
By SSS \sim , $\triangle A'B'C' \sim \triangle ABC$.

STUDY GUIDE: REVIEW. PAGES 504-507

- 1. proportion
- 2. dilation
- 3. means
- 4. ratio

LESSON 7-1, PAGE 504

- **5.** slope of $m = \frac{1}{5}$
- **6.** slope of $n = \frac{-3}{6} = -\frac{1}{2}$
- **7.** slope of $p = \frac{6}{4} = \frac{3}{2}$
- 8. Let x, y be the largest and smallest parts respectively.

$$\frac{x+y}{84} = \frac{6+3}{3+5+6}$$
$$x+y = \frac{84(9)}{14}$$
$$x+y = 54$$

The sum of the smallest and largest parts is 54.

9.
$$\frac{\ell}{w} = \frac{7}{12}$$

$$\ell = \frac{7}{12}w$$

$$P = 2\ell + 2w$$

$$= 2\left(\frac{7}{12}w\right) + 2w$$

$$6P = 7w + 12w$$

$$6(95) = 19w$$

$$w = 30$$

$$\ell = \frac{7}{12}(30) = 17.5$$
Side lengths are 17.5, 30, 17.5, 30.

10.
$$\frac{y}{7} = \frac{9}{3}$$
11. $\frac{10}{4} = \frac{25}{s}$ $3y = 63$ $10s = 100$ $y = 21$ $s = 10$

12.
$$\frac{x}{4} = \frac{9}{x}$$

 $x^2 = 36$
 $x = \pm 6$
13. $\frac{4}{z-1} = \frac{z-1}{36}$
 $144 = (z-1)^2$
 $z-1 = \pm 12$
 $z = 1 \pm 12$
 $z = 13 \text{ or } -11$

14.
$$\frac{12}{2x} = \frac{3x}{32}$$
 15. $\frac{y+1}{24} = \frac{2}{3(y+1)}$ $384 = 6x^2$ $3(y+1)^2 = 48$ $(y+1)^2 = 16$ $y+1 = \pm 4$ $y = -1 \pm 4$ $= 3 \text{ or } -5$

LESSON 7-2, PAGE 505

184

- **16.** $\frac{JK}{PQ} = \frac{8}{4.8} = \frac{5}{3}$; $\frac{JM}{PS} = \frac{5}{3}$; all & are rt &, so \cong yes, by def. of \sim ; \sim ratio = $\frac{5}{3}$; JKLM \sim PQRS
- **17.** yes, by AA ~; ~ ratio = $\frac{TU}{WX} = \frac{12}{6} = 2$; $\wedge TUV \sim \wedge WXY$

LESSON 7-3, PAGE 505

18.	Statements	Reasons
	1. $JL = \frac{1}{3}JN$, $JK = \frac{1}{3}JM$	1. Given
	2. $\frac{JL}{JN} = \frac{1}{3}, \frac{JK}{JM} = \frac{1}{3}$	2. Div. Prop. of =
	$3. \frac{JL}{JN} = \frac{JK}{JM}$	3. Trans. Prop. of =
	4. ∠ <i>J</i> ≅ ∠ <i>J</i>	4. Reflex. Prop. of ≅
	5. △ <i>JKL</i> ~ △ <i>JMN</i>	5. SAS ~ Steps 3, 4

19.	Statements	Reasons
	1. QR ST	1. Given
	2. ∠RQP ≅ ∠STP	2. Alt. Int. & Thm.
		3. Vert. & Thm.
	4. $\triangle PQR \sim \triangle PTS$	4. AA ~ Steps 2, 3

20.	Statements	Reasons
	1. <u>BC</u> ∥ <u>CE</u>	1. Given
	2. ∠ <i>ABD</i> ≅ ∠ <i>C</i>	2. Corr. & Post.
	3. ∠ <i>ADB</i> ≅ ∠ <i>E</i>	3. Corr. 🛦 Post.
	4. △ABD ~ △ACE	4. AA ∼ <i>Steps 2, 3</i>
	$5. \frac{AB}{AC} = \frac{BD}{CE}$	5. Def. of ~ polygons
	6. AB(CE) = AC(BD)	6. Cross Products Prop.

LESSON 7-4, PAGE 506

21.
$$\frac{CE}{15} = \frac{8}{12}$$
 22. $\frac{ST}{10} = \frac{3}{9}$ $12CE = 120$ $9ST = 30$ $ST = 3\frac{1}{3}$

23.
$$\frac{JK}{JM} = \frac{JL}{JN} = \frac{1}{2}$$
 24. $EC/EA = \frac{ED}{EB} = \frac{3}{7}$ Since $\frac{JK}{JM} = \frac{JL}{JN}$ Since $\frac{EC}{EA} = \frac{ED}{EB}$ $\overline{KL} \parallel \overline{MN}$ by Conv. of \triangle Prop. Thm.

25.
$$\frac{SU}{RU} = \frac{SV}{RV}$$

$$\frac{y+1}{8} = \frac{2y}{12}$$

$$12(y+1) = 8(2y)$$

$$12y+12 = 16y$$

$$12 = 4y$$

$$y = 3$$

$$SU = 3+1=4$$

$$SV = 2(3) = 6$$
26.
$$\frac{x+6}{30} = \frac{2x}{24}$$

$$24(x+6) = 30(2x)$$

$$24x + 144 = 60x$$

$$144 = 36x$$

$$x = 4$$

$$AB = x+6+2x$$

$$= 3x+6$$

$$= 3(4)+6=18$$

27.
$$P = a + b + c$$
 where $b = a + x$, $c = 3 + 5 = 8$

$$\frac{3}{a} = \frac{5}{a + x}$$

$$3(a + x) = 5a$$

$$3a + 3x = 5a$$

$$2a = 3x$$

$$P = a + a + x + 8$$

$$= 2a + x + 8$$

$$= 4x + 8$$

LESSON 7-5, PAGE 507

28.
$$3 \text{ ft} = 3(12) \text{ in.} = 36 \text{ in.}$$

 $5 \text{ ft 4 in.} = 5(12) + 4 \text{ in.} = 64 \text{ in.}$
 $14 \text{ ft 3 in.} = 14(12) + 3 \text{ in.} = 171 \text{ in.}$
 $\frac{x}{64} = \frac{171}{36}$
 $36x = 10,944$
 $x = 304 \text{ in.} = 25 \text{ ft 4 in.}$

29.
$$\frac{6}{x} = \frac{12}{3+x}$$

$$6(3+x) = 12x$$

$$18 + 6x = 12x$$

$$18 = 6x$$

$$x = 3 \text{ ft}$$

LESSON 7-6, PAGE 507

30. By the Dist. Formula:
$$RS = \sqrt{2^2 + 2^2} = 2\sqrt{2}; RU = \sqrt{4^2 + 4^2} = 4\sqrt{2}$$

$$RT = \sqrt{1^2 + 3^2} = \sqrt{10}; RV = \sqrt{2^2 + 6^2} = 2\sqrt{10}$$

$$\frac{RS}{RU} = \frac{RT}{RV} = \frac{1}{2}. \ \angle R \cong \angle R \text{ by the Reflex. Prop. of } \cong.$$
So $\triangle RST \sim \triangle RUV \text{ by SAS } \sim.$

31. By the Dist. Formula:
$$JK = \sqrt{2^2 + 1^2} = \sqrt{5}; \ JM = \sqrt{8^2 + 4^2} = 4\sqrt{5}$$
$$JL = |2 - 4| = 2; \ JN = |-4 - 4| = 8$$
$$\frac{JK}{JM} = \frac{JL}{JN} = \frac{1}{4}. \ \angle J \cong \angle J \text{ by the Reflex. Prop. of } \cong.$$
So $\triangle JKL \sim \triangle JMN \text{ by SAS } \sim.$

32.
$$\frac{AO}{CO} = \frac{OB}{OD}$$

 $\frac{12}{18} = \frac{OB}{-9}$
 $-108 = 18OB$
 $OB = -6$
Since *x*-coord. of *B* is 0, $B = (0, -6)$.
Scale factor $= \frac{12}{18} = \frac{2}{3}$.

33. Image vertices are K'(0, 9), L'(0, 0), M'(12, 0). By the Dist. Formula: KL = 3; K'L' = 9; LM = 4; L'M' = 12 $KM = \sqrt{3^2 + 4^2} = 5$; $K'M' = \sqrt{9^2 + 12^2} = 15$ All proportions = 3, so $\triangle KLM \sim \triangle K'L'M'$ by SSS \sim .

CHAPTER TEST, PAGE 508

1. slope of
$$\ell = \frac{-6 - 4}{10 + 6} = -\frac{5}{8}$$

2.
$$\frac{5}{8} = \frac{3.5}{w}$$

 $5w = 28$
 $w = 5.6$ in.

3.
$$\angle B \cong \angle N$$
 and $\angle C \cong \angle P$; yes, by AA \sim ;
 $\sim \text{ratio} = \frac{AB}{MN} = \frac{40}{60} = \frac{2}{3}$; $\triangle ABC \sim \triangle MNP$

1	DE _	_ 55 _	$=\frac{5}{2};\frac{DG}{HL}$	_ 40 _	_ 5		
٦.							
			all & are				≅;
	~ rat	$io = \frac{5}{2}$; DEFG	~ HJK	L by d	ef.	

5.	Statements	Reasons
	1. <i>RSTU</i> is a □.	1. Given
	2. <i>RU</i> <i>ST</i>	2. Def. of □
	3. ∠ <i>VRW</i> ≅ ∠ <i>TSW</i>	3. Alt. Int. 🔬 Thm.
	4. ∠ <i>RWV</i> ≅ ∠ <i>SWT</i>	4. Vert & Thm.
	5. △ <i>RWV</i> ~ △ <i>SWT</i>	5. AA ~ <i>Steps 3, 4</i>

6.
$$\frac{CD}{AB} = \frac{DG}{BG}$$
 $\frac{CD}{2.5} = \frac{6}{9}$
 $9CD = 2.5(6) = 15$
 $CD \approx 1.7 \text{ ft}$
 $\frac{EF}{AB} = \frac{FG}{BG}$
 $\frac{EF}{2.5} = \frac{3}{9}$
 $9FG = 7.5$
 $FG \approx 0.8 \text{ ft}$

7. $\frac{PR}{21} = \frac{10}{18}$
 $18PR = 210$
 $PR = 11\frac{2}{3}$

8.
$$\frac{YW}{XY} = \frac{WZ}{XZ}$$

$$\frac{\frac{t}{2}}{8} = \frac{t-2}{12.8}$$

$$12.8(\frac{t}{2}) = 8(t-2)$$

$$6.4t = 8t - 16$$

$$16 = 1.6t$$

$$t = 10$$

$$YW = \frac{t}{2} = 5$$

$$WZ = t - 2 = 8$$

9. 5 ft 8 in. =
$$5(12) + 8$$
 in. = 68 in.
3 ft = 36 in.; 27 ft = 324 in.

$$\frac{h}{68} = \frac{324}{36} = 9$$

$$h = 68(9) = 612$$
 in. = 51 ft

10.
$$\frac{\text{plan length of } \overline{AB}}{AB} = \frac{1.5}{30}$$
$$\frac{1.25}{AB} = \frac{1.5}{30}$$
$$37.5 = 1.5AB$$
$$\overline{AB} = 25 \text{ ft}$$

11. By the Dist. Formula:

$$AB = \sqrt{3^2 + 1^2} = \sqrt{10}$$
; $AD = \sqrt{9^2 + 3^2} = 3\sqrt{10}$
 $AC = |3 - 5| = 2$; $AE = |-1 - 5| = 6$
 $\frac{AB}{AD} = \frac{AC}{AE} = \frac{1}{3}$. $\angle A \cong \angle A$ by the Reflex. Prop. of \cong

 $\frac{AB}{AD} = \frac{AC}{AE} = \frac{1}{3}$. $\angle A \cong \angle A$ by the Reflex. Prop. of \cong . So $\triangle JKL \sim \triangle JMN$ by SAS \sim .

12.

All rights reserved.

COLLEGE ENTRANCE EXAM PRACTICE. PAGE 509

1. A
$$\frac{BC}{CD} = \frac{AB}{DE}$$
 2. C $\frac{x}{21} = \frac{6}{14}$ $\frac{BC}{9 - BC} = \frac{4}{8} = \frac{1}{2}$ $14x = 126$ $x = 9$ $3BC = 9$ $BC = 3$

Since \overline{BD} is horiz., y-coord. of C is 1; so C = (1 + 3, 1) = (4, 1).

3. D;
$$x + y + z = 750,000$$
 and $x:y:z = 4:5:6$

$$\frac{z}{750,000} = \frac{6}{4+5+6} = \frac{2}{5}$$

$$5z = 1,500,000$$

$$z = 300,000$$

4. D

$$\frac{35}{9} = \frac{h}{1.2}$$

$$42 = 9h$$

$$h = 4\frac{2}{3} \text{ ft} = 4 \text{ ft 8 in.}$$