
6.5 Graphing Radical Functions

Advanced Algebra

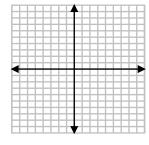
Name _____

Graph the following radical functions:

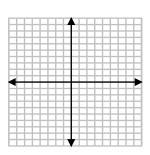
GRAPHS OF RADICAL FUNCTIONS

To graph
$$y = a\sqrt{x-h} + k$$
 or $y = a\sqrt[3]{x-h} + k$, follow these steps

Step 1:

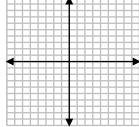

Step 2:

Example #1: Comparing Two graphs.

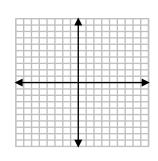

- a) Describe how to obtain the graph of $y = \sqrt[3]{x-2} + 1$ from the graph of $y = \sqrt[3]{x}$.
- b) Describe how to obtain the graph of $y = \sqrt{x-3} + 2$ from the graph of $y = \sqrt{x}$.

Example #2: Graphing a Square Root Function. State the Domain and Range.

a) Graph
$$y = 2\sqrt{x+4} - 1$$



b) Graph
$$y = -3\sqrt{x+2} - 1$$



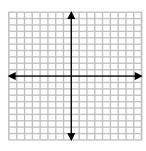
Example #3: Graphing a Cube Root Function. State the Domain and Range.

a) Graph
$$y = -2\sqrt[3]{x-3} + 2$$

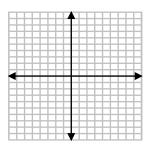
b) Graph
$$y = 3\sqrt[3]{x+1} - 1$$

Comparing Two graphs.

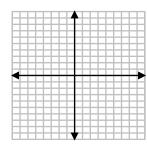
1. Describe how to obtain the graph of $y = -\sqrt[3]{x} - 10$ from the graph of $y = -\sqrt[3]{x}$.

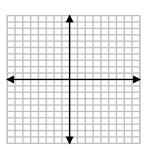

2. Describe how to obtain the graph of $y = \sqrt{x+14}$ from the graph of $y = \sqrt{x}$.

3. Describe how to obtain the graph of $y = \sqrt[3]{x+6} - 5$ from the graph of $y = \sqrt[3]{x}$.

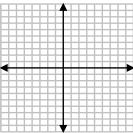

4. Describe how to obtain the graph of $y = 5\sqrt{x-10} - 3$ from the graph of $y = 5\sqrt{x}$.

Graph the Square Root Function. State the Domain and Range.

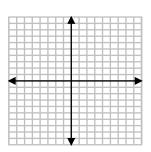

5. Graph
$$y = \sqrt{x+6} - 1$$


6. Graph $y = (x-1)^{1/2} + 7$

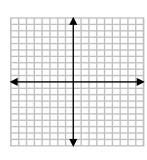
7. Graph y =
$$2\sqrt{x+5} - 1$$

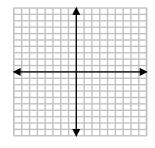


8. Graph $y = -3\sqrt{x-2} + 1$



Graph the Cube Root Function. State the Domain and Range.


9. Graph
$$y = \sqrt[3]{x} - 7$$


10. Graph
$$y = 2\sqrt[3]{x-4} + 3$$

11. Graph
$$y = -3\sqrt[3]{x+4}$$

12. Graph
$$y = (x+2)^{1/3} - 2$$

