Name: _____

Chapter 5: Relationships within Triangles

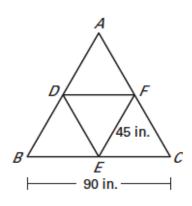
Guided Notes

Geometry Fall Semester

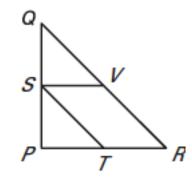
Term	Definition	Example
midsegment of a triangle		
Theorem 5.1 Midsegment	The segment connecting the midpoints of two sides of a triangle is parallel to the third	
Theorem	side and is half as long as that side.	
coordinate proof		

5.1 Midsegment Theorem and Coordinate Proof

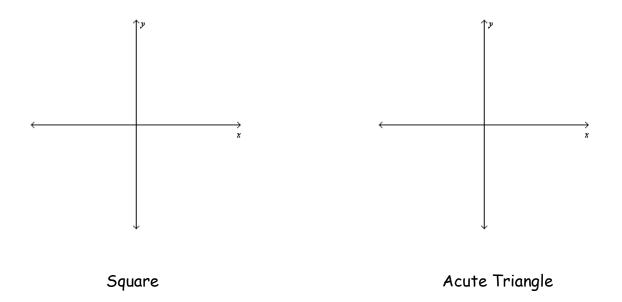
1. In the diagram, \overline{DF} and \overline{EF} are midsegments of $\triangle ABC$. Find DF and AB.



2. In the diagram at the right, QS = SP and PT = TR. Show that $\overline{QR} / / \overline{ST}$.



3. Place a square and an acute triangle in a coordinate plane in a way that's convenient for finding side lengths. Then assign coordinates.



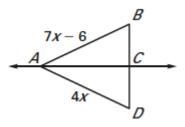
4. Find the length (using distance formula), and midpoint (using midpoint formula) of a diagonal of the square from #3 above.

5.2 Use Perpendicular Bisectors

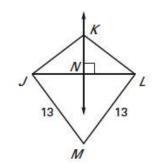
Term	Definition	Example
perpendicular bisector		
equidistant		
Theorem 5.2 Perpendicular Bisector Theorem	In a plane, if a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.	
Theorem 5.3 Converse of the Perpendicular Bisector Theorem	In a plane, if a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.	
concurrent		
point of concurrency		
perpendicular bisector of a triangle		

		err. o ourded riores, page o
Theorem 5.4 Concurrency of Perpendicular Bisectors of a	The perpendicular bisectors of a triangle intersect at a point that is equidistant from the vertices of the triangle.	
Triangle		
		1. Acute Triangle
circumcenter		2. Right Triangle 3. Obtuse Triangle
circumscribed		

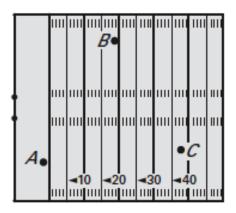
1. \overrightarrow{AC} is the perpendicular bisector of \overrightarrow{BD} . Find AD.



- 2. In the diagram, \overrightarrow{KN} is the perpendicular bisector of \overline{JL} .
 - a) What segment lengths in the diagram are equal?
 - b) Is M on \overrightarrow{KN} ?



3. Three of your friends are playing catch. You want to join and position yourself so that you are the same distance from each of your friends. Find a location for you to stand.



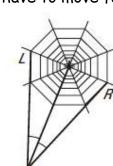
Term	Definition	Example
angle bisector		
distance from a point to a line		
Theorem 5.5 Angle Bisector Theorem	If a point is on the bisector of an angle, then it is equidistant from the two sides of the angle.	
Theorem 5.6 Converse of the Angle Bisector Theorem	If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the bisector of the angle.	
angle bisector of a triangle		
Theorem 5.7 Concurrency of Angle Bisectors of a Triangle	The angle bisectors of a triangle intersect at a point that is equidistant from the sides of the triangle.	
incenter		
inscribed		

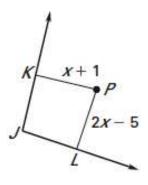
5.3 Use Angle Bisectors of Triangles

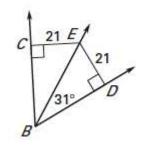
1. Find the measure of $\angle CBE$.

2. A spider's position on its web relative to an approaching fly and the opposite sides of the web form congruent angles as shown. Will the spider have to move farther to reach a fly toward the right edge or the left edge?

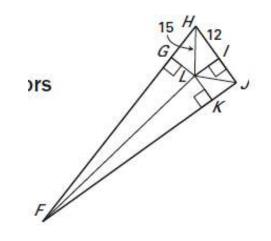
3. For what value of x does P lie on the bisector of $\angle J$?







4. In the diagram, L is the incenter of ΔFHJ . Find LK.

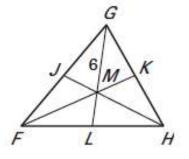


Term Definition Example median of a triangle centroid Theorem 5.8 The medians of a triangle intersect at a Concurrency of point that is two thirds of the distance from Medians of a each vertex to the midpoint of the opposite Triangle side. altitude of a triangle Theorem 5.9 The lines containing the altitudes of a Concurrency of triangle are concurrent. Altitudes of a Triangle 1. Acute Triangle 2. Right Triangle orthocenter 3. Obtuse Triangle

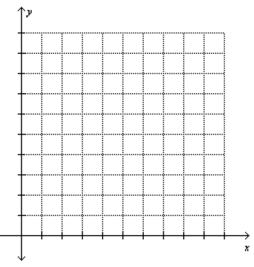
5.4 Use Medians and Altitudes

isosceles triangles	The perpendicular bisector, angle bisector, median, and altitude from the vertex angle	
	to the base are all the same segment.	
equilateral	The perpendicular bisector, angle bisector,	
triangle	median, and altitude from any angle to the	
	opposite side are all the same segment.	

1. In $\triangle FGH$, M is the centroid and GM = 6. Find ML and GL.

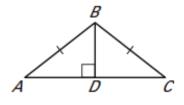


2. The vertices of ΔJKL are J(1,2), K(4,6) and L(7,4). Find the coordinates of the centroid P in ΔJKL .



3. Find the orthocenter P of the triangle.

4. Prove that the altitude to the base of an isosceles triangle is a median.



5.5 Use Inequalities in a Triangle

Term	Definition	Example
Theorem 5.10	If one side of a triangle is longer than another side, then the angle opposite the longer side is larger than the angle opposite the shorter side.	
Theorem 5.11	If one angle of a triangle is longer than another angle, then the side opposite the larger angle is longer than the side opposite the smaller angle.	
Theorem 5.12 Triangle Inequality	The sum of the lengths of any two sides of a triangle is greater than the length of the third side. Some sets of line segments cannot be used to form a triangle, because their lengths do not	
Theorem	satisfy the inequality. When you know two side lengths of a triangle, you can find the range of lengths for the third side.	

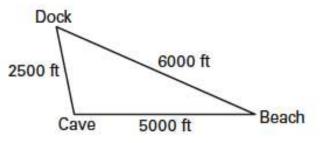
Examples:

1. a) Mark the largest angle and the longest side.

b) Mark the smallest angle and shortest side.

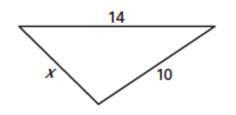
CH. 5 Guided Notes, page 14

2. A long-tailed boat leaves a dock and travels 2500 feet to a cave, 5000 feet to a beach, then 6000 feet back to the dock as shown in the diagram. One of the angles in the path is about 55° and one is about 24° . What is the angle measure of the path made at the cave?



3. A triangle has one side length of 14 and another length of 10. Describe the possible lengths of the third side.

Small values of x (what if x is the shortest side?)



Large values of x (what if x is the longest side?)

х 10 14

5.6 Inequalities in Two Triangles and Indirect Proof

Term	Definition	Example
Theorem 5.13 Hinge Theorem (SAS Inequality)	If two sides of one triangle are congruent to two sides of another triangle, and the included angle of the first triangle is larger than the included angle of the second triangle, then the third side of the first triangle is longer than the third side of the second triangle.	
Theorem 5.14 Converse of the Hinge Theorem (SSS Inequality)	If two sides of one triangle are congruent to two sides of another triangle, and the third side of the first triangle is longer than the third side of the second triangle, then the included angle of the first triangle is larger than the included angle of the second triangle.	
indirect reasoning		
indirect proof (proof by contradiction)		

How to Write an Indirect Proof

Step 1	Identify the statement you want to prove. Assume temporarily that this	
	statement is false by assuming that its opposite is true.	
Step 2	Reason logically until you reach a contradiction.	
Step 3		
	proves the temporary assumption false.	