## **WS2**: Lesson 2.7

Name \_\_\_\_\_ Per. \_\_\_

**2**. Complete the proof.

 $\mathbf{Given} \colon \overline{WX} \cong \overline{YZ}$ 

Prove:  $\overline{WY} \cong \overline{XZ}$ 

|   |   |   | _ |
|---|---|---|---|
|   |   |   |   |
| W | Х | Υ | Z |

| Statements           | Reasons                          |
|----------------------|----------------------------------|
| 1.                   |                                  |
| 2. WX = YZ           |                                  |
| 3. XY = XY           | Reflexive Property of Equality   |
| 4. WX + XY = YZ + XY |                                  |
| 5.                   | Segment Addition Postulate       |
| 6.                   | Substitution                     |
| 7.                   | Definition of Congruent Segments |

**4**. Complete the proof.

**Given:** C is the midpoint of  $\overline{AE}$ C is the midpoint of  $\overline{BD}$ 

 $\overline{AE} \cong \overline{BD}$ 

**Prove**:  $\overline{AC} \cong \overline{CD}$ 



| Statements                               | Reasons                       |  |
|------------------------------------------|-------------------------------|--|
| 1.                                       | Given                         |  |
| 2. AC = CE, BC = CD                      |                               |  |
| 3. AE = BD                               |                               |  |
| 4.                                       | Segment Addition Postulate    |  |
| <b>5</b> . AC + CE = BC + CD             |                               |  |
| 6. AC + AC = CD + CD                     |                               |  |
| 7.                                       | Substitution                  |  |
| 8.                                       | Division Property of Equality |  |
| $9. \ \overline{AC} \cong \overline{CD}$ |                               |  |



## **10**. Complete the proof

Given:  $\overline{VZ}\cong \overline{VY}$  and  $\overline{WY}\cong \overline{XZ}$ 

Prove:  $\overline{VW} \cong \overline{VX}$ 



| Statements                   | Reasons                          |  |
|------------------------------|----------------------------------|--|
| 1.                           |                                  |  |
| 2. VZ = VY and WY = XZ       |                                  |  |
| 3.                           | Segment Addition Postulate       |  |
| <b>4</b> . VX + XZ = VW + WY | Substitution                     |  |
| 5.                           | Substitution                     |  |
| 6. VX = VW                   | Subtraction Property of Equality |  |
| 7.                           | Symmetric Property of Equality   |  |
| 8.                           |                                  |  |

## **12**. Complete the proof

Given: B is the midpoint of  $\overline{AC}$ 

D is the midpoint of  $\overline{CE}$ 

 $\overline{AB} \cong \overline{DE}$ 

Prove: AE = 4AB

| A | В | С | D | E |
|---|---|---|---|---|

| Statements                | Reasons                    |  |
|---------------------------|----------------------------|--|
| 1.                        |                            |  |
| 2. and                    | Definition of a midpoint   |  |
| <b>3</b> . AB = DE        |                            |  |
| <b>4.</b> AB = CD         |                            |  |
| 5.                        | Segment Addition Postulate |  |
| <b>6</b> . AE = AC + CE   |                            |  |
| 7. AE = AB + BC + CD + DE | Substitution               |  |
| 8.                        | Substitution               |  |
| 9.                        |                            |  |

17. Turn to page 147 of your textbook to answer this question. Record your answer below.