| Name: |
|-------|
|-------|

# Chapter 2: Reasoning and Proof

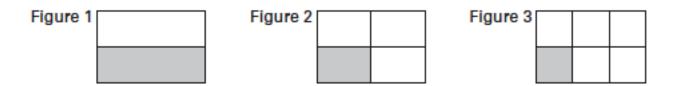
**Guided Notes** 

### 2.1 Use Inductive Reasoning

| Term                   | Definition                                                                                         | Example |
|------------------------|----------------------------------------------------------------------------------------------------|---------|
| conjecture             | An unproven statement that is based on observations.                                               |         |
| inductive<br>reasoning | The process of finding a pattern for specific cases and writing a conjecture for the general case. |         |
| counterexample         | A specific example for which the conjecture is false.                                              |         |

### Examples:

1. Describe how to sketch the fourth figure in the pattern. Then sketch the fourth figure.



2. Describe the pattern in the numbers -1, -4, -16, -64, . . . . Then write the next three numbers in the pattern.

3. Given five noncollinear points, make a conjecture about the number of different ways to connect the points.

| Number of<br>Points | 1 | 2 | 3 | 4 | 5           |
|---------------------|---|---|---|---|-------------|
| Picture             |   |   |   |   | $\bigoplus$ |

4. Numbers such as 1, 3, and 5 are called consecutive odd numbers. Make and test a conjecture about the sum of three consecutive odd numbers.

Step one: Find a pattern using groups of small numbers.

Step two: Make a conjecture.

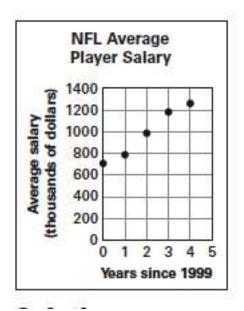
Step three: Test your conjecture.

5. A student makes the following conjecture about the difference of two numbers. Find a counterexample to disprove the student's conjecture.

Student's conjecture: The difference of any two numbers is always smaller than the larger number.

(Hint: To find a counterexample you need to find an example that is opposite what the student is saying. Prove him/her wrong using an example.)

6. This scatter plot shows the average salary of players in the National Football League (NFL) since 1999. Make a conjecture based on the graph.



## 2.2 Analyze Conditional Statements

| Term                                       | Definition                                                                                                                    | Example |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------|
| conditional statements $(p \rightarrow q)$ | A logical statement that has two parts, a hypothesis and a conclusion.                                                        |         |
| if-then<br>form                            | A form of a conditional statement in which the "if" part contains the hypothesis and the "then" part contains the conclusion. |         |
| hypothesis<br>(p)                          | The "if" part of a conditional statement.                                                                                     |         |
| conclusion<br>(q)                          | The "then" part of a conditional statement.                                                                                   |         |
| negation<br>(~p)                           | The opposite of the original statement.                                                                                       |         |
| converse $(q \rightarrow p)$               | Formed by switching the hypothesis and conclusion.                                                                            |         |
| inverse<br>(~ <i>p → ~q</i> )              | Formed by negating both the hypothesis and conclusion.                                                                        |         |
| contrapositive<br>(~q → ~p)                | Formed by writing the converse and then negating both the hypothesis and conclusion.                                          |         |

|                         |                                                | C | <u>н.</u> | 2 | G | uide | bs | N | ote: | S, | pag | ge ( | 5 |
|-------------------------|------------------------------------------------|---|-----------|---|---|------|----|---|------|----|-----|------|---|
| equivalent              | Two statements that are both true or both      |   |           |   |   |      |    |   |      |    |     |      |   |
| statements              | false.                                         |   |           |   |   |      |    |   |      |    |     |      |   |
|                         | Two lines that intersect to form right angles. |   |           |   |   |      |    |   |      |    |     |      |   |
| perpendicular           |                                                |   |           |   |   |      |    |   |      |    |     |      |   |
| lines                   |                                                |   |           |   |   |      |    |   |      |    |     |      |   |
| biconditional           | A statement that contains the phrase           |   |           |   |   |      |    |   |      |    |     |      |   |
| statements              | "if and only if".                              |   |           |   |   |      |    |   |      |    |     |      |   |
| $(p \leftrightarrow q)$ |                                                |   |           |   |   |      |    |   |      |    |     |      |   |
|                         |                                                |   |           |   |   |      |    |   |      |    |     |      |   |
|                         |                                                |   |           |   |   |      |    |   |      |    |     |      |   |
|                         |                                                |   |           |   |   |      |    |   |      |    |     |      |   |
|                         |                                                |   |           |   |   |      |    |   |      |    |     |      |   |
|                         |                                                |   |           |   |   |      |    |   |      |    |     |      |   |
|                         |                                                |   |           |   |   |      |    |   |      |    |     |      |   |
|                         |                                                |   |           |   |   |      |    |   |      |    |     |      |   |
| Examples:               |                                                |   |           |   |   |      |    |   |      |    |     |      |   |

| <ol> <li>Rewrite the conditional statement in If-th</li> </ol> | nen form. |
|----------------------------------------------------------------|-----------|
| Statement: All vertebrates have a ba                           | ckbone.   |
| If-then form: If                                               | , then    |
|                                                                | ·         |

2. Write the If-then form, the converse, the inverse, and the contrapositive of the conditional statement . . . "Olympians are athletes." Decide whether each statmenet is true or false.

| If. | -then | form |
|-----|-------|------|
|     |       |      |

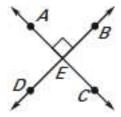
Converse:

Inverse:

#### Contrapositive:

3. Decide whether each statement about the diagram is true. Explain your answer using the definitions you have learned.

a.  $\overrightarrow{AC} \perp \overrightarrow{BD}$ 



b.  $\angle AED$  and  $\angle BEC$  are a linear pair.

4. Write the definition of parallel lines as a biconditional.

**Definition:** If two lines lie in the same plane and do not intersect, then they are parallel.

Converse:

Biconditional:

2.3 Apply Deductive Reasoning

| Term                   | Definition                                                                                                                         | E×ample |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------|
| deductive<br>reasoning | Using facts, definitions, accepted properties, and the laws of logic to form an argument.                                          |         |
| Law of<br>Detachment   | If $p \rightarrow q$ is a true conditional and $p$ is true, then $q$ is true. Also called a direct argument.                       |         |
| Law of<br>Syllogism    | If $p \rightarrow q$ and $q \rightarrow r$ are true conditionals, then $p \rightarrow r$ is also true. Also called the chain rule. |         |

| Examp | les: |
|-------|------|
|-------|------|

- 1. Use the Law of Detachment to make a valid conclusion statement.
- a). If two angles have the same measure, then they are congruent. You are given that  $m\angle A=m\angle B$ .

| Hypothesis:       |             | · |
|-------------------|-------------|---|
| Conclusion:       |             |   |
|                   |             |   |
| Valid conclusion: | <del></del> | , |

| b). Jesse goes to the gym every w                                                                                                   | veekday. Today is Monday.                       |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Write as if-then statement:                                                                                                         | ·                                               |
| Hypothesis:                                                                                                                         | ····································            |
| Conclusion:                                                                                                                         | ·                                               |
| Valid conclusion:                                                                                                                   | <del>.</del>                                    |
| <ol> <li>If possible, use the <u>Law of Syllogism</u><br/>follows from the pair of true statem</li> </ol>                           | n to write the conditional statement that ents. |
| a). If Ron eats lunch today, then sandwich, then he will drink a glass of middle Identify parts of first conditional st Hypothesis: | atement:                                        |
| Conclusion:                                                                                                                         | ······································          |
| Identify parts of second conditional Hypothesis:                                                                                    |                                                 |
| Conclusion:                                                                                                                         | ··································              |
| New conditional statement using Law                                                                                                 | of Syllogism:                                   |
| b). If $x^2 > 36$ , then $x^2 > 30$ . If                                                                                            | $x > 6$ , then $x^2 > 36$ .                     |
| $1^{st}$ statement: Hyp. $\rightarrow$                                                                                              | Concl. →                                        |
| 2 <sup>nd</sup> statement: Hyp. →                                                                                                   | Concl. →                                        |
| New conditional statement using the                                                                                                 | Law of Syllogism:                               |
|                                                                                                                                     |                                                 |

c). If a triangle is equilateral, then all of its sides are congruent. If a triangle is equilateral, then all angles in the interior of the triangle are congruent.

$$1^{st}$$
 statement: Hyp  $\rightarrow$  Concl.  $\rightarrow$ 

$$2^{nd}$$
 statement: Hyp.  $\rightarrow$  Concl.  $\rightarrow$ 

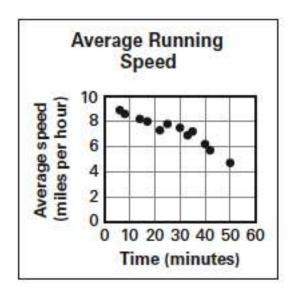
New conditional statement using the Law of Syllogism:

\_\_\_\_\_

3. Inductive or Deductive Reasoning?

Remember . . . <u>Inductive Reasoning</u> is based on observation and pattern. We don't always know whether our conjecture is true. <u>Deductive Reasoning</u> is based on fact.

Tell whether the statement is the result of inductive or deductive reasoning.



- a). The runner's average speed decreases as the time spent running increases.
- b). The runner's average speed is slower when running for 40 minutes than when running for 10 minutes.

### Chapter 2 Extension: Symbolic Notation and Truth Tables

| Term        | Definition | Example |
|-------------|------------|---------|
| truth value |            |         |
| truth table |            |         |

### 2.4 Use Postulates and Diagrams

| Term        | Definition                 | Example |
|-------------|----------------------------|---------|
| Postulate 1 | Ruler Postulate            |         |
| Postulate 2 | Segment Addition Postulate |         |
| Postulate 3 | Protractor Postulate       |         |
| Postulate 4 | Angle Addition Postulate   |         |

### Point, Line, and Plane Postulates

| Postulate 5  | Through any two points there exists exactly one line.                          |  |
|--------------|--------------------------------------------------------------------------------|--|
| Postulate 6  | A line contains at least two points.                                           |  |
| Postulate 7  | If two lines intersect, then their intersection is exactly one point.          |  |
| Postulate 8  | Through any three noncollinear points there exists exactly one plane.          |  |
| Postulate 9  | A plane contains at least three noncollinear points.                           |  |
| Postulate 10 | If two points lie in a plane, then the line containing them lies in the plane. |  |
| Postulate 11 | If two planes intersect, then their intersection is a line.                    |  |

| line             | A line is $oldsymbol{\perp}$ to a plane if and only if the line |  |
|------------------|-----------------------------------------------------------------|--|
| perpendicular to | intersects the plane at a point that is $oldsymbol{\perp}$ to   |  |
| a plane          | every line on the plane.                                        |  |

## 2.5 Reason Using Properties from Algebra

| Algebraic Properties of Equality                                                                      |                                          |  |  |
|-------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|
|                                                                                                       | Let $a$ , $b$ , and $c$ be real numbers. |  |  |
| Addition Property                                                                                     | If $a = b$ , then $a + c = b + c$ .      |  |  |
| Subtraction Property                                                                                  | If $a = b$ , then $a - c = b - c$ .      |  |  |
| Multiplication Property If $a = b$ , then $a \cdot c = b \cdot c$ .                                   |                                          |  |  |
| Division Property If $a = b$ and $c \neq 0$ , then $\frac{a}{c} = \frac{b}{c}$ .                      |                                          |  |  |
| Substitution Property If $a = b$ , then $a$ can be substituted for $b$ in any equation or expression. |                                          |  |  |
| Distributive Property $a(b + c) = ab + ac$ , where a, b, and c are real numbers.                      |                                          |  |  |

| Properties of Equality |                               |                          |                                      |
|------------------------|-------------------------------|--------------------------|--------------------------------------|
| Property               | Real Numbers                  | Segments                 | Angles                               |
| Reflexive              | For any real number           | For any segment AB,      | For any angle A,                     |
|                        | a, a = a.                     | AB = BA.                 | $m \angle A = m \angle A$ .          |
| Symmetric              | For any real numbers          | For any segments AB and  | For any angles $A$ and $B$ , if      |
|                        | a and $b$ , if $a = b$ ,      | CD, if $AB = CD$ , then  | $m\angle A=m\angle B$ , then         |
|                        | then $b = a$ .                | CD = AB.                 | $m \angle B = m \angle A$ .          |
| Transitive             | For any real numbers          | For any segments AB, CD, | For any angles $A$ , $B$ , and $C$ , |
|                        | a, $b$ , and $c$ , if $a = b$ | and EF, if AB = CD and   | if $m\angle A=m\angle B$ and         |
|                        | and $b = c$ , then            | CD = EF, then AB = EF.   | $m\angle B=m\angle C$ , then         |
|                        | a = c.                        |                          | $m \angle A = m \angle C$ .          |

### Examples:

1. Solve the following equation and write reasons for each step.

| STEP          | REASON |
|---------------|--------|
| 1. $2x+3=9-x$ | 1.     |
| 2.            | 2.     |
| 3.            | 3.     |
| 4.            | 4.     |

2. Solve, using the Distributive Property. Write reasons for each step.

| 1. | -4(6x+2)=64 | 1 | • |
|----|-------------|---|---|
|----|-------------|---|---|

3. A motorist travels 5 miles per hour slower than the speed limit (s) for 3.5 hours. The distance traveled (d) can be determined by the formula d=3.5(s-5). Solve for s. Write reasons for each step.

1. 
$$d = 3.5(s-5)$$

4. Use properties of equality to show that CF = AD Take your given statements from the diagram.



### **Equation**

Reason

1.

2.

3.

4.

5.

6.

7.

8.

1.

3.

2.

4.

5.

6.

**7**.

8.

### 2.6 Prove Statements about Segments and Angles

| Term                | Definition | Example |
|---------------------|------------|---------|
| proof               |            |         |
| two-column<br>proof |            |         |
| theorem             |            |         |

|            | Theorem 2.1 Congruence of Segments  Segment congruence is reflexive, symmetric, and transitive.                          |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Reflexive  | For any segment $AB$ , $\overline{AB}\cong\overline{AB}$ .                                                               |  |  |
| Symmetric  | Symmetric If $\overline{AB}\cong \overline{CD}$ , then $\overline{CD}\cong \overline{AB}$ .                              |  |  |
| Transitive | If $\overline{AB}\cong \overline{CD}$ and $\overline{CD}\cong \overline{EF}$ , then $\overline{AB}\cong \overline{EF}$ . |  |  |

| Theorem 2.2 Congruence of Angles  Angle congruence is reflexive, symmetric, and transitive. |                                                                                                           |  |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| Reflexive For any angle A, $m \angle A \cong m \angle A$ .                                  |                                                                                                           |  |
| Symmetric If $m\angle A\cong m\angle B$ , then $m\angle B\cong m\angle A$ .                 |                                                                                                           |  |
| Transitive                                                                                  | If $m \angle A \cong m \angle B$ and $m \angle B \cong m \angle C$ , then $m \angle A \cong m \angle C$ . |  |

| <b>Midpoint Definition in Proofs:</b> | Congruent Angles and Segments definition in Proofs: |
|---------------------------------------|-----------------------------------------------------|
| Angle Bisector Definition in Proofs:  |                                                     |

#### Examples:

#### 1. WRITE A TWO-COLUM PROOF

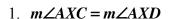
Use the diagram to prove that  $m \angle 1 = m \angle 4$ .

Given:  $m \angle 2 = m \angle 3$ ,  $m \angle AXD = m \angle AXC$ 

Prove:  $m \angle 1 = m \angle 4$ 

#### Statements

Reasons



2. 
$$m\angle AXD = m\angle 1 + m\angle 2$$

3. 
$$m\angle AXC = m\angle 3 + m\angle 4$$

4. 
$$m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$$

5. 
$$m \angle 2 = m \angle 3$$

6. 
$$m \angle 1 + m \angle 3 = m \angle 3 + m \angle 4$$

7. 
$$m \angle 1 = m \angle 4$$

2. Name the property that is illustrated by the following statement.

If  $\angle 5 \cong \angle 3$ , then  $\angle 3 \cong \angle 5$ .

3. If you know that  $\overrightarrow{BD}$  bisects  $\angle ABC$ , prove that  $m\angle ABC$  is two times  $m\angle 1$ .

Given:  $\overrightarrow{BD}$  bisects  $\angle ABC$ 

Prove:  $m \angle ABC = 2 \cdot m \angle 1$ 

**Statements** 

#### Reasons

#### 1. $\overrightarrow{BD}$ bisects $\angle ABC$

2. \_\_\_\_\_

2.  $\angle$  bisector  $\rightarrow \cong \angle$ 's

3. \_\_\_\_\_

 $3. \cong \angle$ 's  $\rightarrow = \angle$ 's

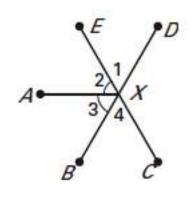
4.  $m \angle 1 + m \angle 2 = m \angle ABC$ 

4. \_\_\_\_\_

5.  $m \angle 1 + m \angle \underline{\hspace{1cm}} = m \angle ABC$ 

5. Subst. P.O.E.

6. Simplify



4 Complete the following two-column proof.

Given:  $\mathbf{R}$  is the midpoint of  $\overline{\mathbf{AM}}$  and  $\mathbf{MB} = \mathbf{AR}$ .

Prove: M is the midpoint of  $\overline{RB}$ .



Statements Reasons

1.

- 1. **R** is the midpoint of  $\overline{AM}$ . MB = AR
- 2.  $\overline{AR} \cong \overline{RM}$ 2.
- 3. AR = RM3.
- 4. Trans. P.O.E. 4.
- 5.  $\overline{MB} \cong \overline{RM}$ 5.
- 6. M is the midpoint of  $\overline{RB}$ 6.

2.7 Prove Angle Pair Relationships

| Term            | Definition                                  | Example |
|-----------------|---------------------------------------------|---------|
| Theorem 2.3     | All right angles are congruent.             |         |
| Right Angles    |                                             |         |
| Congruence      |                                             |         |
| Theorem         |                                             |         |
| linear pair     |                                             |         |
| Postulate 12    | If two angles form a linear pair, then they |         |
| Linear Pair     | are supplementary.                          |         |
| Postulate       |                                             |         |
| vertical angles |                                             |         |
| Theorem 2.6     | Vertical angles are congruent.              |         |
| Vertical Angles |                                             |         |
| Congruence      |                                             |         |
| Theorem         |                                             |         |

1. Given:  $\overline{JK}\bot\overline{KL}$ ,  $\overline{ML}\bot\overline{KL}$ 

Prove:  $\angle K \cong \angle L$ 



#### <u>Statements</u>

1.  $\overline{JK}\bot\overline{KL}$  ,  $\overline{ML}\bot\overline{KL}$ 

2. \_\_\_\_\_

3.  $\angle K \cong \angle L$ 

#### Reasons

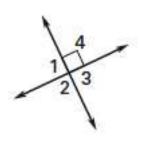
1. \_\_\_\_\_

2.  $\perp \rightarrow rt \angle 's$ 

3. \_\_\_\_\_

2. Given:  $\angle 4$  is a right angle

Prove:  $m \angle 2 = 90^{\circ}$ 



#### Statements

- 1.  $\angle 4$  is a right angle
- 2.  $m \angle 4 = 90^{\circ}$
- 3. ∠2≅∠4
- 4.  $m \angle 2 = m \angle 4$
- 5.  $m \angle 2 = 90^{\circ}$

#### Reasons

1. \_\_\_\_\_

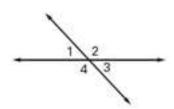
2. \_\_\_\_\_

3.

4. \_\_\_\_\_

5. \_\_\_\_\_

- 3. Use the diagram to decide if the statement is true or false.
  - a) If  $m \angle 1 = 47^{\circ}$ , then  $m \angle 2 = 43^{\circ}$ .
  - b) If  $m \angle 1 = 47^{\circ}$ , then  $m \angle 3 = 47^{\circ}$ .
  - c)  $m \angle 1 + m \angle 3 = m \angle 2 + m \angle 4$
  - d)  $m \angle 1 + m \angle 4 = m \angle 2 + m \angle 3$



### CH. 2 Guided Notes, page 21

4. Find the value of the variables and the measure of each angle in the diagram.

