

GeometricSequence What if your pay check started at \$100 a week and doubled every week. What would your salary be after four weeks?

Geometric Sequence • Geometric Sequence: a sequence in which each term after the first is found by multiplying the previous term by a constant value called the common ratio.

• Find the first five terms of the geometric sequence with $a_1 = -3$ and common ratio (r) of 5.

• Find the common ratio of the sequence 2, -4, 8, -16, 32, ...

 To find the common ratio, divide any term by the previous term.

Geometric Sequence Just like arithmetic sequences, there is a formula for finding any given term in a geometric sequence.

• Thus our formula for finding any term of a geometric sequence is $a_n = a_1 \cdot r^{n-1}$

• Find the 10th term of the geometric sequence with a_1 = 2000 and a common ratio of 1/2.

• Find the first five terms in a sequence if $a_1 = -64$ and r = -1/4

Geometric Means Just like with arithmetic sequences, the missing terms between two nonconsecutive terms in a geometric sequence are called geometric means.

Geometric Means Looking at the geometric sequence 3, 12, 48, 192, 768 the geometric means between 3 and 768 are Å

Geometric Means
Find two geometric means between -5 and 625.
-5, ____, 625

Solve these problems dealing with terms of geometric sequences

1. Find the 1st 5 terms of the sequence where $a_1 = \frac{1}{2}$, $r = \frac{2}{3}$

2.Find the 12th term of the geometric sequence 3,12,48, ...

3. Find the missing terms of the geometric sequence 2.5, ____, ___, 20.

• Geometric Series • Geometric Series - the sum of the terms of a geometric sequence.

• Geo. Sequence: 1, 3, 9, 27, 81

• Geo. Series: 1+3 + 9 + 27 + 81

• What is the sum of the geometric series?

Geometric Series
 The formula for the sum S_n of the first n terms of a geometric series is given by

 $S_{n} = \frac{a_{1} - a_{1}r^{n}}{1 - r} \text{ or } S_{n} = \frac{a_{1}(1 - r^{n})}{1 - r}$

Geometric Series
Find ⁴/₁ - 3(2)ⁿ⁻¹
You can actually do it two ways. Let's use the old way.

 Geometric Series
 The other method is to use the sum of geometric series formula.

$$a_1 = ___, r = ___, n = ____$$

Solve these problems dealing with geometric series

1. Find the sum of the 1^{st} 8 terms of the series $2 + 6 + 18 + \ldots + 4374$

2. Find the sum of the 200th term of the series 81, 27, 9, 3, ...

3.Evaluate

On the worksheets, work only the problems that are checked. Use your notes.

Answers will be put on this screen in this order: 13-2, 13-3, 13-4, 13-5

Use arithmetic formula for terms

1. 27 3. -17 5. 26th 7.81 8. -73 9. 103/3 10.17/3 11.26/3 43/3 13.37/3 59/3

Use formula for Sum of Arithmetic series

- 1. 741
- 2. -987
- 9. 105
- 10. 105
- 11. 93
- 12. -15
- 15. 325

Use Formula for Geometric Terms

1. -6, 4, -8\3, 16/9
2. 2,
$$2\sqrt{3}$$
 6, $6\sqrt{3}$
3. -2.5, -5, -10, -20
4. $\sqrt{2}, \sqrt{6}, 3\sqrt{2}, 3\sqrt{6}$
5. 135
7. 128

11.48, 72, 108

Use Geometric Sum formula

315
 215/64
 65/3
 549