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o Ch, 11 - Vector Applications ' Hour
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1.  Inthis question the vector (0] km represents a displacement due east, and the vector [?] km

represents a displacement due north.

The diagram shows the path of the oil-tanker Aristides relative to the port of Orro which is

situated at the point {0, 0}). $Y
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The position of the Arfstides \/ Path of Aristides
. . _ : 0
is given by the vector equation 20F {l] |
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(a} Findthe pos;tlon of the Aristides at 13:00.
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{2)
{b} Find
(i) the velocity vector;
(i) the speed of the Aristides. 5 C:sz T [-ﬁ}?\:( Okwsﬁ gl,\p }
{4)
Another ship, the cargo-vessel Boadicea, is stationary, with position vecto_r [1 i] Km.
{c}  Show that the two ships will collide, and find the time of collision.
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In this question, distance is in kilometers, time is in hours. A balloon is moving at a constant
. 3
height with a speed of 18 km ™}, in the direction of the vector | 4 |. Attime t = 0, the balloon
0
is at point B with coordinates {0, 0, 5).

(a)  Show that the position vector b of the balloon at time t Is given by
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b= =(0]+r|14.4|.
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Attime t = 0, a helicopter goes to deliver a message to the balloon. The position vector h of the
helicopter at time t is given by
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(b} (i) Write down the coordinates of the starting position of the helicopter.

{ii)  Find the speed of the helicopter.
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{c) The helicoptér reaches the balloon at point R.
(i)  Find the time the hellcoptert kes to reach th balloon,
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(i) Find the coor ina% of R.
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1 \
In this question the vector (0] represents a displacement of 1 km east,

0
and the vector (J represents a displacement of 1 km north.

The diagram helow shows the positions of towns A, B and Cin relation to an airport O, which is
at the point {0, 0) An aircraft flies over the three towns at a constant speed of 250 km h™*
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Town A is 600 km west and 200 km south of the airport.
Town B is 200 km east and 400 km north of the airport.
Town Cis 1200 km east and 350 km south of the airport. %
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(a) {) Find AB. '-100 200 (1308,
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{ii)  Show that the vector of length one unitin the direction of AB is [

{4)
An aircraft flies over town A at 12:00, heading towards town B at 250 km hs,
Let (‘D] be the velocity vector of the aircraft. Let ¢ be the number of hours in flight after 12:00.
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The position of the aircraft can be given by the vector equation | |= + .
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B (i) Show that the velocsty vector is
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(i}  Find the position of the aircraft at 13 00.
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(i) At what time is the aircraft flying over town B?
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4, In fhis question, distance is In matres.

Toy airplanes fly in a straight line at a constant speed. Airplane 1 passes throngh a point A

x 3y (-2
Its position, p seconds after it has passed through A, is given by | ¥ [=] -4 [+p| 3 |
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i}  Write down the coordinates of A. -
(@ ) tite down the coordinates o (ﬁ} L'}O)

(i) Find the speed of the airplane in ms™. N - {4 marks] |
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. {b) After seven seconds the airplaue passes through a point B.

(i) Find the coordinates of B.
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(i)  Find the distance the airplane has travelled during the seven seconds, [5marks]
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{c) Airplane 2 passes tliyongh a point C. Its position ¢ seconds afier it passes

x 2 -1y
through Cis givenby | v |=1 -3 [+q] 2 e R.
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The angle between the flight paths of Airplane 1 and Airplane 2 .is 40°. Find the
'rwo valties of a. Hint: Solve by graphing [7 marks}
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5. NO CALCULATOR Problem

Distances in this question are in metres.

Ryan and Jack have model mrpiam:s, which take off fiom ie:vci ground, Iack s girplane takes
off after Ryan’s.
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The position of Ryan’s airplane ¢ seconds after it takes off is given by r={ 6 |+#] 2
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{a} . Find the speed of Ryan’s airplane. [3]
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(b} Find the heipht of Ryan’s airplane after two seconds. o 2}
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The Poﬁiﬁoﬁ of Jack's airplane s seconds after it takes off is given by #=| 44 |+5] -6},
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(e) Show that the paths of the airplanes are perpendicular, [57
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The twa airplanes collide at the point (-23, 2(}, 28%.
(d) How ieng after Ryan’s airplane takes off does Iack’s mxpianc take off ? i
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