Chapter 1 Notes – Science Skills

What is Science? – Section 1.1

Read Pages 2-6 in order to complete the reading guide and answer the questions.

Science involves asking questions about nature and then finding ways to answer them. This process doesn't happen by itself – it is driven by the curiosity of scientists.

Science from Curiosity

is a system of l	knowledge and the methods you use to find that
knowledge. Science Begins with	and often ends with
Curi	iosity provides questions but is seldom enough to achieve
scientific results. Methods such as	and
provide ways to find the answers. In s	ome experiments, observations are
, or des	scriptive. In others, they are
, 01	r numerical.

- What is science?
- What is the basis of science?

Science and Technology

Science and technology are ______. Advances in one can lead to advances in the other.

How are science and technology related? ______

Branches of Science

The study of science is divided into social science and natural science. Natural science is generally divided into three branches: ______, _____,

_____, and ______

Each of these branches can be further divided.

Physical science covers a broad range of study that focuses on _____

_____. The two main areas of physical science are chemistry and physics.

_____ is the study of the composition, structure, properties, and reactions of

is the study of matter and energy and the interactions matter. between the two through forces and motion.

Comprehension Questions

1. How does the scientific process start and end?

2. Explain the advantages and disadvantages of subdividing science into many different areas.

3. Why do scientists seek to discover new laws of the universe?

Matching

4	science	A) study of the origin, history, and structure of Earth
5	technology	B) study of the universe beyond Earth
6	chemistry	C) system of knowledge and the methods used to find it
7	physics	D) study of living things
8	geology	E) use of knowledge to solve practical problems
9	astronomy	F) study of the composition, structure, properties, and reactions of matter
10	biology	G) study of matter and energy and their interactions

Using a Scientific Approach – Section 1.2

Read Pages 7-11 in order to complete the reading guide and answer the questions.

Scientific Methods

In order to answer questions about the world around them, scientists need to get information. An organized plan for gathering, organizing, and communicating information is called a

_____. Despite the name, a scientific method can be used by anyone, including ______. All you need is a ______ to use it. The goal of any scientific method is to ______ or to better understand an ______.

> What is a scientific method? ______

Making Observations

Scientific investigations often begin with observations. An _______ is information that you obtain through your _______. Repeatable observations are known as _______. For example, when you walk or run in the rain, you get wet. Standing in the rain leaves you much wetter than walking or running in the rain. You might combine these _______ into a ______: How does your speed affect how wet you get when you are caught in the rain?

What is an observation? ______

Forming a Hypothesis

A ______ is a proposed answer to a question. To answer the question raised by your observation about traveling in the rain, you might guess that the faster your speed, the drier you will stay in the rain. What can you do with your _____? For a hypothesis to be ______, it must be ______.

What is a hypothesis?

Testing a Hypothesis

Scientists perform ______ to _____ their hypotheses. In an experiment, any factor that can change is called a ______. Suppose you do an experiment to test if speed affects how wet you get in the rain. The variables will include your speed, your size, the rate of rainfall, and the amount of water that hits you.

Your hypothesis states that	, speed, causes a change in
	, the amount of water that hits you. The speed with
which you walk or run is the	variable (<i>dependent</i>), or the variable that
causes a change in another. The amou	int of water that you accumulate is the
variable (<i>independent</i>), or the variable	e that changes in response to the manipulated variable. To
examine the relationship between a m	anipulated variable and a responding variable, scientists
use	A controlled experiment is an experiment
in which only	, the manipulated variable, is
changed at	a time. While the responding variable is observed for
changes, all other variables are kept _	

How do you make a controlled experiment? ______

Drawing Conclusions

Based on their data, the scientists concluded that running in the rain keeps you drier than walking – about 40 percent drier, in fact. Now you have scientific ______ to the hypothesis stated earlier.

What happens if the data do not support the hypothesis? In such a case, a scientist can ______ the hypothesis or ______ a new one, based on the ______ from the experiment. A new experiment must then be designed to test the revised or new hypothesis.

Developing a Theory

Once a hypothesis has been ______ in _____ experiments, scientists can begin to _______. A scientific theory is a well-tested _______ for a set of observations or experimental results. For example, according to the kinetic theory of matter, all particles of matter are in constant motion. Kinetic theory explains a wide range of observations, such as ice melting or the pressure of a gas.

Theories are never ______. Instead, they become stronger if the facts continue to explain new facts and discoveries, the theory may be revised or a new theory may replace it.

What happens if new facts are unexplained by a theory?

Scientific Laws

After repeated observations or experiments, scientists may arrive at a _____

______ it. The explanation of such a pattern is provided by a scientific theory.

What is the difference between a scientific theory and a scientific law?

Scientific Models

If you have ever been lost in a city, you know that a street map can help you find your location. A street map is a type of model, or ______, of an object or event. Scientific models make it easier to understand things that might be too difficult to

. As long as a model lets you

_____ what is supposed to be represented then the model has done its job.

An example of a mental, rather than physical, model might be that comets are like giant snowballs, primarily made of ice. Scientists would _______ this model through ______, experiments, and calculations. Possibly they would even send a space probe – a visit to a comet really is planned! If all of these tests ______ the idea that comets are made of ice, then the model of icy comets will continue to be believed.

However, if the data show that this model is wrong, then it must either be ______ or be ______ by a new model. If scientists never challenged old models, then nothing new would be learned, and we would still believe what we believed hundreds of years ago. Science works by _______. The fact that newer models are continually replacing old models is a sign that new _______ are continually occurring. As the knowledge that makes up science keeps changing, scientists develop a better and better _______ of the ______.

Comprehension Questions

1. What is the goal of scientific methods?

2. Why are scientific models useful?

3. What are three types of variables in a controlled experiment?

4. Does every scientific method begin with an observation? Explain.

Matching

5	_scientific method	A) statement that summarizes a pattern found in nature
6	_observation	B) variable that changes in response to the manipulated variable
7	_hypothesis	C) experiment in which only one variable is deliberately changed
8	_manipulated variable	D) an organized plan for gathering, organizing, and
		communicating information
9	_responding variable	E) the variable that causes a change in another
10	_controlled experiment	F) representation of an object or event
11	_scientific theory	G) information you obtain through your senses
12	_scientific law	H) well tested explanation for a set of observations
13	_model	I) proposed answer to a question

Section 1.3 Notes - Measurement

Read Pages 14 - 20 in order to complete the reading guide and answer the questions.

How old are you? How tall are you? The answers to these questions are measurements. Measurements are important in both science and everyday life. Hardly a day passes without the need for you to measure amounts of money or the passage of time. It would be difficult to imagine doing science without any measurements.

Using Scientific Notation

Scientists often work with very large or very small ______. For example, the speed of light is about 300,000,000 meters per second. On the other hand, an average snail has been clocked at a speed of only 0.00086 meter per second.

Instead of having to writ	e out all the	in these numbers, you can use a		
	called scientific notatio	n		
	_ is a way of expressing	a value as the	of a number	
between and	and a power of 10	. For example, the number 300),000,000 written	
in scientific notation is 3	.0 x 10 ⁸ . The	, 8, tells you that	the decimal point	
is really 8 places to the _	of the 3.			
For numbers	than 1 that are in sc	ientific notation, the	is	
	For example, the	number 0.00086 written in sci	entific notation is	
8.6 x 10 ⁻⁴ . The	exponent	t tells you how many		
	there are to the	of the 8.6. Scientific	e notation makes	
very large or very small	numbers	to work with.		

SI Units of Measurement

For a measurement to make sense, it requires both a number and a ______. For example, if you told one of your friends that you had finished a homework assignment "in five," what would your friend think? Would it be five minutes or five hours? Maybe it was a long assignment, and you actually meant five days. Or maybe you meant that you wrote five pages. You should always ______ measurements in ______ and _____ and ______ so that their meaning is clear.

Many of the units you are familiar with, such as inches, feet, and degrees Fahrenheit, are not units that are used in _______. Scientists use a set of measuring units called _____, or the International System of Units. The abbreviation stands for the French name *Systeme International d'Unites*. SI is a revised ______ of the ______ system, which was originally developed in France in 1791. By adhering to one system of units, scientists can readily _______ one another's _______.

Base Units and Derived Units

SI is built upon ______ metric units, known as ______ units, which are listed in the figure below. In SI, the base unit for ______, or the straight-line distance between two points, is the ______ (m). The base unit for ______, or the quantity of matter in an object or sample, is the ______ (kg). Additional SI units, called ______ units, are made from ______ of _____ units. The figure below lists some common derived units. For example, _______ is the amount of space taken up by an object. The volume of a rectangular box equals its _______ times its _______ times its _______. Each of these dimensions can be measured in meters, so you can derive the SI unit for volume by multiplying meters by meters, which gives you (m³).

SI Base Units		Derived Units			
Quantity	Unit	Symbol	Quantity	Unit	Symbol
Length	Meter	М	Area	Square meter	M ²
Mass	Kilogram	Kg	Volume	Cubic meter	M ³
Temperature	Kelvin	K	Density	Kilograms per cubic meter	Kg/m ³
Time	Second	S	Pressure	Pascal (kg/m*s ²)	Ра
Amount of Substance	Mole	mol	Energy	Joule (kg*m ² /s ²)	J
Electric current	Ampere	А	Frequency	Hertz (1/s)	Hz
Luminous intensity	Candela	cd	Electric charge	Coulomb (A*s)	С

Another quantity that requires a derived unit is density. ______ is the ratio of an object's ______ to its ______.

Density = Mass/Volume

To derive the SI unit for density, you can ______ the base unit for _____ by the _____ unit for _____. Dividing kilograms by cubic meters yields the SI unit for density, kilograms per cubic meter (kg/m³).

Metric Prefixes

The metric unit for a given quantity is not always a ______ one to use. For example, the time it takes for a computer hard drive to read or write data – also known as the seek time – is in the range of ______ of a second. A typical seek time might be 0.009 second. This can be written in a more compact way by using a ______. A metric prefix indicates how many times a unit should be ______ or _____ by ____.

The figure below shows some common metric prefixes. Using the prefix *milli*- (m), you can write 0.009 second as 9 milliseconds, or 9 ms.

9 ms = 9/1000 s = 0.009 s

Note that dividing by ______ is the same as multiplying by ______.

Metric prefixes can also make a unit ______. For example, a distance of 12,000 meters can also be written as 12 kilometers.

$$12 \text{ km} = 12 \text{ x} 1000 \text{ m} = 12,000 \text{ m}$$

Metric prefixes turn up in ______ units as well. If you work with computers, you probably know that a gigabyte of data refers to 1,000,000,000 bytes. A megapixel is 1,000,000 pixels.

SI Prefixes			
Prefix	Symbol	Meaning	Multiply Unit by
Giga-	G	Billion (10 ⁹)	1,000,000,000
Mega-	М	Million (10 ⁶)	1,000,000
Kilo-	k	Thousand (10 ³)	1,000
Deci-	d	Tenth (10 ⁻¹)	0.1
Centi-	с	Hundredth (10 ⁻²)	0.01
Milli-	m	Thousandth (10 ⁻³)	0.001
Micro-	μ	Millionth (10 ⁻⁶)	0.000001
Nano-	n	Billionth (10-9)	0.000000001

The easiest way _	from one unit of	to another is to
use	A conversion fact	for is a of
	measurements that is used to convert a quantity	expressed in one unit to
	unit. Suppose you want to convert the height of Mo	unt Everest, 8848
meters, into kilor	neters. Based on the prefix kilo-, you know that 1 kilome	eter is 1000 meters. This

ratio gives you two possible conversion factors.

1km/1000m 1000m/1 km

Since you are converting from meters to kilometers, the number should get ______. Multiplying by the conversion factor on the left yields a smaller number.

8848 x (1km/1000m) = 8.848 km

Notice that the meter units ______, leaving you with kilometers (the larger unit).

To convert 8.848 kilometers back into meters, multiply by the conversion factor on the right. Since you are converting from kilometers to meters, the number should get ______

8.848 km x (1000m/1km) = 8848 m

In this case, the kilometer units cancel, leaving you with meters.

Limits of Measurement

Suppose you wanted to measure how much time it takes for you to eat your breakfast. You could use two different clocks – an analog clock and a digital clock. The analog clock displays time to the nearest minute. The digital clock displays time to the nearest second (or one sixtieth of a minute). Which clock would you choose?

Precision

The digital clock offers more precision. _______ is a gauge of how _______a measurement is. According to the analog clock, it might take you 5 minutes to eat your breakfast. Using the digital clock, however, you might measure 5 minutes and 15 seconds, or 5.25 minutes. The second _______ has more significant figures. ______ are all the ______ that are ______ in a measurement, plus the ______ digit that is ______. The time recorded as 5.25 minutes has three significant figures. The time recorded as 5 minutes has one significant figures. The significant figures, the less _______ of the separate measurements must be correctly _______ in the final _______. The precision of a calculated answer is _______ by the _______ precise measurement used in the _______. So if the least precise measurement in your calculation has two significant figures.

Suppose you measure the mass of a piece of iron to be 34.73 grams on an electronic balance. You then measure the volume to be 4.42 cubic centimeters. What is the density of the iron?

Density = $34.73 \text{g}/4.42 \text{ cm}^3 = 7.857466 \text{ g/cm}^3$

Your answer should have only ______ significant figures because the ______ precise measurement, the volume, has ______ significant figures. Rounding your answer to three significant figures gives you a density of 7.86 grams per cubic centimeter.

Accuracy

Another important quality in a measurement is its accuracy. ______ is the ______ of a measurement to the ______ value of what is being measured. For example, suppose the digital clock is running 15 minutes slow. Although the clock would remain precise to the nearest second, the time displayed would not be accurate.

Measuring Temperature

A______ is an instrument that measures ______, or how hot an object is.

The two temperature scales that you are probably most familiar with are the

scale and the _______ scale. On the Fahrenheit scale, water freezes at 32°F and boils at 212°F at sea level. On the Celsius (or _______) scale, water freezes at _______ and boils at ______. A degree Celsius is almost twice as large as a degree Fahrenheit. There is also a difference of 32 degrees between the zero point of the Celsius scale and the zero point of the Fahrenheit scale. You can ______ from one scale to the other by using one of the following formulas.

$$^{\circ}C = 5/9 (^{\circ}F - 32.0^{\circ})$$
 $^{\circ}F = 9/5 (^{\circ}C) + 32.0^{\circ}$

The SI base unit for temperature is the ______ (K). A temperature of _____ K, or 0 kelvin, refers to the ______ possible temperature that can be reached. In degrees Celsius, this temperature is -273.15°C. To ______ between kelvins and degrees Celsius, use the following formula.

$$K = °C + 273$$

The figure below compares some common temperatures expressed in degrees Celsius, degrees Fahrenheit, and kelvins.

Common Temperatures				
Fahrenheight (°F)Celcius (°C)Kelvin (K)				
Water boils	212	100	373	
Human body	98.6	37	310	
Average room	68	20	293	
Water freezes	32	0	273	

Comprehension Questions

- 1. Why do scientists use scientific notation?
- 2. What system of units do scientists use for measurements?
- 3. How does the precision of measurements affect the precision of scientific calculations?
- 4. List the SI units for mass, length, and temperature.
- 5. A bulb thermometer gives an indoor temperature reading of 21°C. A digital thermometer in the same room gives a reading of 20.7°C. Which device is more precise? Explain
- 6. Convert -11°F into degrees Celcius, and then into kelvins.

Matching

7	scientific notation	A) the ratio of an object's mass to its volume
8	_length	B) ratio of equivalent measurements that is used to convert a quantity
		expressed in one unit to another unit
9	_mass	C) way of expressing a value as the product of a number between 1 and
		10 and a power of 10
10	_volume	D) straight-line distance between two points
11	_density	E) gauge of how exact a measurement is
12	_conversion factor	F) amount of space taken up by an object
13	precision	G) all the digits that are known in a measurement, plus the last digit that
		is estimated
14	_significant figures	H) quantity of matter in an object or sample
15	_accuracy	I) instrument that measures temperature
16	thermometer	J) the closeness of a measurement to the actual value of what is being
		measured