Central Force Model

Uniform Circular Motion

Unit Learning Expectations – We are learning to:

-graph and state the relationships between velocity and mass, velocity and radius, and velocity and period for an object undergoing uniform circular motion.

-apply the mathematical expression that describes the relationship between force, mass, radius and velocity.

-distinguish between centripetal (Fnet-c) and previously described forces.

- construct force diagrams that display the forces acting on an object undergoing uniform circular motion.

- Essential Questions
 - What is necessary to keep an object moving in a circular path?
 - How did you make your sphere in the introductory activity travel in a circular path?
 - Did you use a new force that we have not yet described?
 - i.e. something other than Fg, Fn, Ff, Fpush, Fpull, etc...

- Essential Questions
 - What direction does the force act to keep the sphere moving in a circular path?
 - What happens to the sphere if you remove the force? How does it travel?
 - If the sphere travels with constant speed around the circle, is velocity also constant?

- Essential Questions
 - If the direction the sphere travels is always changing, does it fit our constant velocity or uniform acceleration model?
 - What factors contribute to how much force is required to maintain circular motion?

- Essential Questions
 - What is necessary to keep an object moving in a circular path?
 - How did you make your sphere in the introductory activity travel in a circular path?
 - Did you use a new force that we have not yet described?
 - i.e. something other than Fg, Fn, Ff, Fpush, Fpull, etc...

- Essential Questions
 - What is necessary to keep an object moving in a circular path?
 - A force was required
 - How did you make your sphere in the introductory activity travel in a circular path?
 - Pushed it toward the center
 - Did you use a new force that we have not yet described?
 - i.e. something other than Fg, Fn, Ff, Fpush, Fpull, etc...
 - No, nothing new just same contact forces we have already studied

- Conceptual Responses
 - What direction does the force act to keep the sphere moving in a circular path?
 - Always directed toward center of circle
 - What happens to the sphere if you remove the force? How does it travel?
 - Continues moving in straight path, at a tangent to circle
 - If the sphere travels with constant speed around the circle, is velocity also constant?
 - Because direction is always changing, it moves with constant speed but velocity changes.

- Key Questions
 - If the direction the sphere travels is always changing, does it fit our constant velocity or uniform acceleration model?
 - The particle force model holds that an unbalanced force is required to cause a change in velocity; therefore this is uniform acceleration.
 - What factors contribute to how much force is required to maintain circular motion?
 - Mass, velocity, & radius of circle

The Centripetal Force and Direction Change

Any object moving in a circle (or along a circular path) experiences a centripetal force. That is, there is some physical force pushing or pulling the object towards the center of the circle. This is the centripetal force requirement. The word *centripetal* is merely an adjective used to describe the direction of the force. "Centri-" means center and "-petal" means towards. We are not introducing a new *type* of force but rather describing the direction of the net force acting upon the object that moves in the circle. Whatever the object, if it moves in a circle, there is some force acting upon it to cause it to deviate from its straight-line path, accelerate inwards and move along a circular path.

- Net forces
 - Fnet-x = sum of all horizontal forces
 - Generally define right as positive & left as negative.
 - Fnet-y = sum of all vertical forces
 - Generally define up as positive & down as negative.
 - Fnet-c = (centripetal force) sum of all forces directed toward or away from the center of a circular path
 - Generally define toward center as positive & away from center as negative.

Circular Motion Situations

- Horizontal
 - Fnet-c is positive toward center.
 - − Example: Fnet-c = Ft + Fn \neq ON
 - Fg acts vertically so it neither acts toward or away from the center of the circular path and therefore is not considered when analyzing Fnetc in this case
- Vertical
 - Fnet-c is positive toward center.
 - Example: Fnet-c = Fg + Fn \neq ON
 - Fg can act either toward or away from the center of the circular path
 - Fg does not change magnitude, but can change from positive to negative

Note: in all cases of circular motion Fnet-c never equals ON.

- Vertical Circular Motion 4 key locations
- Example of stopper on string:

 $\mathbf{F}_{net-c} = \mathbf{F}_{\mathsf{T}} + \mathbf{F}_{\mathsf{g}}$

- note on diagrams that black $F_{net\mathcal{c}c}$ is the sum of F_T and F_g and should not be considered a separate force.
- F_{net-c} is shown next to forces; however it is the sum of the forces and is addition of F_T and F_g .

• Vertical Circular Motion – 12 o'clock

 $\mathbf{F}_{net-c} = \mathbf{F}_{T} + \mathbf{F}_{g}$, assume $\mathbf{F}_{net-c} = +20N$ and mass is 1kg.

 $+20N = F_{T} + (+10N)$

(positive b/c directed toward center of circle or positive direction)

Vertical Circular Motion – 3 & 9 o'clock

 $F_{net-c} = F_T + F_g$, assume $F_{net-c} = +20N$ and mass is 1kg.

(in this case F_g is not part of the F_{net-c} equation because it does not act in a direction toward or away from the center of the circular path.

+20N = F_T (positive b/c directed toward center of circle or positive direction)

• Vertical Circular Motion – 6 o'clock

 $\mathbf{F}_{net-c} = \mathbf{F}_{T} + \mathbf{F}_{g}$, assume $\mathbf{F}_{net-c} = +20N$ and mass is 1kg.

 $+20N = F_{T} + (-10N)$

(negative b/c directed away from center of circle or negative direction)

 Using slopes of linear graphs and qualitative comparisons of variables, the mathematical representation for Fnet-c is:

Fnet-c =
$$mv^2/rand$$
 $a_c = v^2/r$

• Note – see geometric proof in reading

References & Resources

- Texts
 - CP
 - Honors
- Links
 - Rutgers Physics
 - Phet : University of Colorado
 - The Physics Classroom