- What: The 'Gentral Dogma' is the process by which the instructions in DNA are converted into a functional product. It was first proposed in 1958 by Francis Crick, discoverer of the structure of DNA. ... In transcription, the information in the DNA of every cell is converted into small, portable RNA messages - Why. The information to produce a protein is encoded in the cell's DNA. When a protein is produced, a copy of the DNA is made (called mRNA) and this copy is transported to a ribosome. Ribosomes read the information in the mRNA and use that information to assemble amino acids into a protein. Every cell in the human body contains protein. The basic structure of protein is a chain of amino acids. You need protein in your diet to help your body repair cells and make new ones. - Where. Ribosomes are the sites in a cell in which protein sunthesis takes place. Cells have many ribosomes, and the exact number depends on how active a particular cell is in synthesizing proteins. It occurs in two stages, transcription and translation. Transcription is the transfer of genetic instructions in DNA to mRNA in the nucleus. It includes three steps, initiation, elongation, and termination. After the mRNA is processed, it carries the instructions to a ribosome in the cytoplasm. Translation is the process by which a protein is synthesized from the information contained in a molecule of messenger RNA (mRNA). During translation, an mRNA sequence is read using the genetic code, which is a set of rules that defines how an mRNA sequence is to be translated into the 20-letter code of amino acids, which are the building blocks of proteins. | | DALA | | | Phe | UUU | UUC | L | ys | AAA | | AA | G | | 9 | TAC | | |-------------|-----------------|-------------------|---------------------|------|-----|---------------------|-----|-----------------------------------|---------------------|-------------------|-------------------|---------------------------|--------------------|--------------------|-------------|------------| | DNA Triplet | mRNA
Codon | tRNA
Anticodon | Amino Acid | Leu | UUA | UUG | CCU | CUC | Cl | JA | С | UG | | C | GG/ | 4 | | 1. | | | Methionine
(Met) | lle | AUU | AUC | Α | GAU GAC | | | | | | ATC | | | | 2. | | GGA | | Met | AUG | Glu GAA GAG GTA ACC | | | | | | | | | | | | 3. TTC | | | | Val | GUU | GUC | GUA | GUG | GUG Cys UGU UGC | | | | | | | | | 4. | UAG | | | Ser | UCU | UCC | UCA | UCG | A | AGU AGC AAA | | | | | | | | 5. GTC | | | | Pro | CCU | CCC | CCA | CCG Codons Found in Messenger RNA | | | | | | | | | | 6. | | | Tryptophan
(Trp) | Thr | ACU | ACC | ACA | ACG | Second Base U C A G | | | | | | | | | 7. | | GUA | , , , | Ala | GCU | GCC | GCA | GCG | | U | Phe
Phe
Leu | Ser
Ser
Ser | Tyr
Tyr
Stop | Cys
Cys
Stop | U
C
A | | | 8. | UUU | | | Tyr | UAU | UAC | | | | \parallel | Leu | Ser
Pro | Stop
His | Trp
Arg | G
U | | | Arg | CGU | CGC | | Stop | UAA | UAG | UGA | | Sase | С | Leu
Leu
Leu | Pro
Pro
Pro | Gln Ar | Arg
Arg
Arg | C
A
G | Base | | | CGA CGG | | | His | CAU | CAC | | | First Base | A | lle
lle | Thr
Thr | Asn
Asn | Ser
Ser | | Third Base | | | | | | Gln | CAA | CAG | Trp | | | \parallel | lle
Met
Val | Thr
Thr
Ala | Lys
Lys
Asp | Arg
Arg
Gly | A
G
U | | | Gly | GGC GGC GGA GGG | | | Asn | AAU | AAC | U | | G | Val
Val
Val | Ala
Ala
Ala | Asp Gi
Glu Gi
Glu G | | C
A
G | | | T4.0