
Honors Chemistry – Grade 10			
length of time in weeks	Concepts & Competencies	Common Assessments	Academic Standard (PA Core if applicable)
nit 1 3	Matter and ChangeStudents will differentiate between physical properties and chemical properties.Students will differentiate between pure substances and mixtures; differentiate between heterogeneous and homogeneous mixtures.Students will explain the difference between endothermic and exothermic reactions.Students will apply knowledge of mixtures to appropriate	 Lab – "Cupric Chloride and Aluminum Lab" Element Symbols Quiz Homework Unit Assessment 	3.2.C.A1 3.2.C.A1 3.2.10.A4
nit 2 4	separation techniquesMeasurement and Density/Specific HeatStudents will identify properties of matter that depend on sample size.Students will explain how heat energy will move from a higher temperature to a lower temperature until equilibrium is reached.Students will examine the status of existing theories.Students will evaluate experimental information for relevance and adherence to science processes.Students will judge that conclusions are consistent and logical with experimental conditions.	 Dimensional Analysis Quiz Lab – "Calculating Density" Formal Lab Report – "Searching for Regularity" Lab – "Specific Heat" Homework Unit Assessments 	3.2.10.A1 3.2.10.B3

	Interpret results of experimental research to predict new		
	information, propose additional investigable questions, or		
	advance a solution.		
	Communicate and defend a scientific argument.		
	communicate and defend a scientific argument.		
Jnit 3 🦰	Atomic Theory	Element Symbols Quiz	3.2.10.A2
	¹ Students will explain why compounds are composed of integer	Element Project	3.2.12.A2
	ratios of elements.	Chain-Link Fence Activity	3.2.10.A5
		Lab – "Law of Conservation of Mass"	3.2.C.A4
	Students will distinguish among the isotopic forms of elements.	> Homework	3.2.C.A5
	Students will describe the historical development of models of	 Unit Assessment 	3.2.C.A5
	the atom and how they contributed to modern atomic theory.		
	the atom and now they contributed to modern atomic theory.		
	Students will interpret and apply the laws of conservation of		
	mass, constant composition (definite proportions), and		
	multiple proportions.		
	Churchenster uith an eine alternet version for an Deltern (et an in		
	Students will recognize discoveries from Dalton (atomic theory), Thomson (the electron), Rutherford (the nucleus), and		
	Bohr (planetary model of atom), and understand how each		
	discovery leads to modern theory.		
	Students will describe Rutherford's "gold foil" experiment that		
	led to the discovery of the nuclear atom. Identify the major		
	components (protons, neutrons, and electrons) of the nuclear		
Lett A	atom and explain how they interact. Nuclear and Radioactivity	Lab- "Candium"	3.2.12.A2
Jnit 4	2 Students will explain the probabilistic nature of radioactive	 Negative Ions Quiz 	3.2.12.A2
Ľ	decay based on subatomic rearrangement in the atomic	 Homework 	3.2.12.A3
	nucleus.	Unit Assessment	
	Students will identify the three main types of radioactive		
	decay and compare their properties.		
	Students will describe the process of radioactive decay by		
	using nuclear equations and explain the concept of half-life for		
	an isotope.		

nit 5	 Electrons in the Atom Students will predict properties of elements using trends of the periodic table. Students will compare the electron configurations for the first twenty elements of the periodic table. Students will relate the position of an element on the periodic table to its electron configuration and compare its reactivity to the reactivity of other elements in the table. Students will explain how light is absorbed or emitted by electron orbital transitions. 	 Spectrum and Wavelength Quiz Lab – "Flame Test" Lab – "Relationship of Wavelength to Color" Lab – "Absorption Spectra" Unit Assessment 	3.2.10.A1 3.2.C.A2 3.2.C.A2 3.2.12.A2
Jnit 6	Periodic Table 1 Students will predict properties of elements using trends of the periodic table. Students will explain the relationship of an element's position on the periodic table to its atomic number, ionization energy, electro-negativity, atomic size, and classification of elements. Students will use electro-negativity to explain the difference between polar and nonpolar covalent bonds. Students will relate the position of an element on the periodic table to its electron configuration and compare its reactivity to the reactivity of other elements in the table.	 Periodic Trends Graphing Activity – "Exercise on the Periodic Table" Electron Configurations Lab Unit Assessment 	3.2.10.A1 3.2.C.A1 3.2.C.A1 3.2.C.A2
Jnit 7	 3 Nomenclature Students will predict properties of elements using trends of the periodic table. Students will compare and contrast different bond types that result in the formation of molecules and compounds. Students will explain how atoms combine to form compounds through both ionic and covalent bonding. 	 Ions Quizzes Lab – "7 Solutions" Unit Assessment 	3.2.10.A1 3.2.10.A2 3.2.C.A2 3.2.C.A2 3.2.C.A2 3.2.C.A2 3.2.C.A2 3.2.12.A4

	Students will predict chemical formulas based on the number		
	of valence electrons.		
	Students will draw Lewis dot structures for simple molecules and ionic compounds.		
	Students will predict the chemical formulas for simple ionic and molecular compounds.		
	Students will describe the interactions between acids and bases.		
nit 8 🛛 🦰	Chemical Reactions	Reaction Quizzes	3.2.C.A1
5	stadents initial entitate between physical properties and	"13 Reactions Lab"	3.2.C.A2
	chemical properties.	Unit Assessment	3.2.10.A4
	Students will predict the chemical formulas for simple ionic and molecular compounds.		3.2.C.A4 3.2.C.A4
	Students will describe chemical reactions in terms of atomic rearrangement and/or electron transfer.		
	Students will balance chemical equations by applying the laws of conservation of mass.		
	Students will classify chemical reactions as synthesis (combination), decomposition, single displacement (replacement), double displacement, and combustion.		
Jnit 9 📻	The Mole	Lab – "Mole Calculations"	3.2.10.A2
4	Students will explain why compounds are composed of integer ratios of elements.	 Lab - % Composition Lab - "Empirical Formula of a Compound" Activity - Mole Flight 1023 	3.2.C.A2 3.2.C.A2 3.2.C.A2
	Students will predict the chemical formulas for simple ionic	Lab – "% Water in Hydrates"	3.2.10.A4
	and molecular compounds.	 Lab – "Make a Solution" Mole Conversions Quiz 1 & 2 	3.2.10.A5
	Students will use the mole concept to determine number of	Solutions/Molarity Quiz	
	particles and molar mass for elements and compounds.	Unit Assessment	
	Students will determine percent compositions, empirical formulas, and molecular formulas.		

Unit 10 5	Students will predict the amounts of products and reactants in a chemical reaction using mole relationships. Students will apply the mole concept to determine number of particles and molar mass for elements and compounds. The Mole and Solutions Students will explain why compounds are composed of integer ratios of elements. Students will predict the chemical formulas for simple ionic and molecular compounds. Students will use the mole concept to determine number of particles and molar mass for elements and compounds. Students will use the mole concept to determine number of particles and molar mass for elements and compounds. Students will determine percent compositions, empirical formulas, and molecular formulas. Students will predict the amounts of products and reactants in	 Lab – "Mole Calculations" Lab - % Composition Lab – "Empirical Formula of a Compound" Activity – Mole Flight 1023 Lab – "% Water in Hydrates" Lab – "Make a Solution" Mole Conversions Quiz 1 & 2 Solutions/Molarity Quiz Unit Assessment 	3.2.10.A2 3.2.C.A2 3.2.C.A2 3.2.C.A2 3.2.10.A4 3.2.10.A5
Unit 11 2	Students will predict the amounts of products and reactants in a chemical reaction using mole relationships. Students will apply the mole concept to determine number of particles and molar mass for elements and compounds. Students will predict the amounts of products and reactants in a chemical reaction using mole relationships.	 Stoichiometry Lab Unit Assessment 	3.2.10.A4 3.2.C.A4
Unit 12 2	Students will use stoichiometry to predict quantitative relationships in a chemical reaction. <u>Gas Laws</u> Students will describe phases of matter according to the kinetic molecular theory. Students will describe the three normal states of matter in terms of energy, particle motion, and phase transitions.	 Gas Law Simulations (on computer) Gas Law Demonstrations and Explanations Lab – "Molar Volume" Lab – "Molar Mass of Butane" Gas Law Quizzes Unit Assessment 	3.2.10.A3 3.2.C.A3 3.2.10.A4
	Students will predict the amounts of products and reactants in a chemical reaction using mole relationships.		

